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M. Büttiker and M. Moskalets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1 From an Internal Response to a Quantum Pump Effect . . . . . . . . . . 33
2 Quantum Coherent Pumping: A Simple Picture . . . . . . . . . . . . . . . . . 36



VIII Contents

3 Beyond the Frozen Scatterer Approximation:
Instantaneous Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

The Landauer-Büttiker Formula
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Preface

The topics presented in this book were discussed at the conference “QMath9”
held in Giens, France, September 12th-16th 2004. QMath is a series of meet-
ings whose aim is to present the state of the art in the Mathematical Physics
of Quantum Systems, both from the point of view of physical models and of
the mathematical techniques developed for their study. The series was initi-
ated in the early seventies as an attempt to enhance collaboration between
mathematical physicists from eastern and western European countries. In the
nineties it took a worldwide dimension. At the same time, due to engineer-
ing achievements, for example in the mesoscopic realm, there was a renewed
interest in basic questions of quantum dynamics.

The program of QMath9, which was attended by 170 scientists from 23
countries, consisted of 123 talks grouped by the topics: Nanophysics, Quan-
tum dynamics, Quantum field theory, Quantum kinetics, Random Schrödinger
operators, Semiclassical analysis, Spectral theory. QMath9 was also the frame
for the 2004 meeting of the European Research Group on “Mathematics and
Quantum Physics” directed by Monique Combescure. For a detailed account
of the program, see http://www.cpt.univ.mrs.fr/̃ qmath9.

Expanded versions of several selected introductory talks presented at the
conference are included in this volume. Their aim is to provide the reader with
an easier access to the sometimes technical state of the art in a topic. Other
contributions are devoted to a pedagogical exposition of quite recent results
at the frontiers of research, parts of which were presented in “QMath9”. In
addition, the reader will find in this book new results triggered by discussions
which took place at the meeting.
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Institute of Mathematics
University of Munich
Theresienstr.
39 D-80333 Munich
Germany
lerdos@mathematik.uni-muenchen.
de

P. Exner
Department of Theoretical Physics
Nuclear Physics Institute
Academy of Sciences
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Université de Cergy-Pontoise
Site de Saint-Martin
2 avenue Adolphe Chauvin
95302 Cergy-Pontoise Cédex
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Physique Théorique, Luminy-Case
907, 13288 Marseille, Cedex 09
France
zagrebnov@cpt.univ-mrs.fr

S. Zelditch
Department of Mathematics
Johns Hopkins University
Baltimore MD 21218
USA
zelditch@math.jhu.edu



Introduction

QMath9 gave a particular importance to summarize the state of the art of
the field in a perspective to transmit knowledge to younger scientists. The
main contributors to the field were gathered in order to communicate results,
open questions and motivate new research by the confrontation of different
view points. The edition of this book follows this spirit; the main effort of
the authors and editors is to help finding an access to the variety of themes
and the sometimes very sophisticated literature in Mathematical Physics.

The contributions of this book are organized in five topical groups: Quan-
tum Dynamics and Spectral Theory, Quantum Field Theory and Statistical
Mechanics, Quantum Kinetics and Bose-Einstein Condensation, Disordered
Systems and Random Operators, Semiclassical Analysis and Quantum Chaos.
This splitting is admittedly somewhat arbitrary, since there are overlaps be-
tween the topics and the frontiers between the chosen groups may be quite
fuzzy. Moreover, there are close connections between the tools and techniques
used in the analysis of quite different physical phenomena. An introduction
to each theme is given. This plan is intended as a readers guide rather than
as an attempt to put contributions into well defined categories.
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Abstract. We discuss the recent proof of Cantor spectrum for the almost Mathieu
operator for all conjectured values of the parameters.

1 Introduction

The almost Mathieu operator (a.k.a. the Harper operator or the Hofstadter
model) is a Schrödinger operator on �2(Z),

(Hλ,α,θu)n = un+1 + un−1 + 2λ cos 2π(θ + nα)un ,

where λ, α, θ ∈ R are parameters (the coupling, the frequency and the phase).
This model first appeared in the work of Peierls [21]. It arises in physics
literature as related, in two different ways, to a two-dimensional electron
subject to a perpendicular magnetic field [15, 23]. It plays a central role in
the Thouless et al theory of the integer quantum Hall effect [27]. The value
of λ of most interest from the physics point of view is λ = 1. It is called the
critical value as it separates two different behaviors as far as the nature of
the spectrum is concerned.

If α = p
q is rational, it is well known that the spectrum consists of the

union of q intervals possibly touching at endpoints. In the case of irrational
α the spectrum (which then does not depend on θ) has been conjectured for
a long time to be a Cantor set for all λ �= 0 [7]. To prove this conjecture has
been dubbed the Ten Martini problem by Barry Simon, after an offer of Kac
in 1981, see Problem 4 in [25].

In 1984 Bellissard and Simon [8] proved the conjecture for generic pairs of
(λ, α). In 1987 Sinai [26] proved Cantor spectrum for a.e. α in the perturba-
tive regime: for λ = λ(α) sufficiently large or small. In 1989 Helffer-Sjöstrand
proved Cantor spectrum for the critical value λ = 1 and an explicitly de-
fined generic set of α [16]. Most developments in the 90s were related to the
following observation. For α = p

q the spectrum of Hλ,α,θ can have at most
q − 1 gaps. It turns out that all these gaps are open, except for the middle
one for even q [11, 20]. Choi, Eliott, and Yui obtained in fact an exponential

A. Avila and S. Jitomirskaya: Solving the Ten Martini Problem, Lect. Notes Phys. 690, 5–16
(2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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lower bound on the size of the individual gaps from which they deduced Can-
tor spectrum for Liouville (exponentially well approximated by the rationals)
α [11]. In 1994 Last, using certain estimates of Avron, van Mouche and Si-
mon [6], proved zero measure Cantor spectrum for a.e. α (for an explicit set
that intersects with but does not contain the set in [16]) and λ = 1 [18]. Just
extending this result to the case of all (rather than a.e.) α was considered a
big challenge (see Problem 5 in [25]).

A major breakthrough came recently with an influx of ideas coming from
dynamical systems. Puig, using Aubry duality [1] and localization for θ = 0
and λ > 1 [13], proved Cantor spectrum for Diophantine α and any noncritical
λ [22]. At about the same time, Avila and Krikorian proved zero measure
Cantor spectrum for λ = 1 and α satisfying a certain Diophantine condition,
therefore extending the result of Last to all irrational α [3]. The solution of
the Ten Martini problem as originally stated was finally given in [2]:

Main Theorem [2]. The spectrum of the almost Mathieu operator is a Can-
tor set for all irrational α and for all λ �= 0.

Here we present the broad lines of the argument of [2]. For a much more
detailed account of the history as well as of the physics background and
related developments see a recent review [19].

While the ten martini problem was solved, a stronger version of it, dubbed
by B. Simon the Dry Ten Martini problem is still open. The problem is to
prove that all the gaps prescribed by the gap labelling theorem are open. This
fact would be quite meaningful for the QHE related applications [4]. Dry ten
martini was only established for Liouville α [2, 11] and for Diophantine α in
the perturbative regime [22], using a theorem of Eliasson [12].

1.1 Rough Strategy

The history of the Ten Martini problem we described shows the existence of
a number of different approaches, applicable on different parameter ranges.

Denote by Σλ,α the union over θ ∈ R of the spectrum of Hλ,α,θ (recall
that the spectrum is actually θ-independent if α ∈ R\Q). Due to the obvious
symmetry Σλ,α = −Σ−λ,α, we may assume that λ > 0. Aubry duality gives
a much more interesting symmetry, which implies that Σλ,α = λΣλ−1,α. The
critical coupling λ = 1 separates two very distinct regimes. The transition
at λ = 1 can be clearly seen by consideration of the Lyapunov exponent
L(E) = Lλ,α(E), for which we have the following statement.

Theorem 1. [9] Let λ > 0, α ∈ R \ Q. For every E ∈ Σλ,α, Lλ,α(E) =
max{lnλ, 0}.

With respect to the frequency α, one can broadly distinguish two ap-
proaches, applicable depending on whether α is well approximated by ratio-
nals or not (the Liouville and the Diophantine cases):
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1. In the Liouvillian region, one can try to proceed by rational approxima-
tion, exploiting the fact that a significant part of the behavior at rational
frequencies is accessible by calculation (this is a very special property of
the cosine potential).

2. In the Diophantine region, one can attemp to solve two small divisor prob-
lems that have been linked with Cantor spectrum.
(a) Localization (for large coupling), whose relevance to Cantor spectrum

was shown in [22].
(b) Floquet reducibility (for small coupling), which is connected to Cantor

spectrum in [12,22].

Although Aubry duality relates both problems for λ �= 1, it is important
to notice that the small divisor analysis is much more developed in the lo-
calization problem, where powerful non-perturbative methods are currently
available.

To decide whether α should be considered Liouville or Diophantine for
the Ten Martini problem, we introduce a parameter β = β(α) ∈ [0,∞]:

β = lim sup
n→∞

ln qn+1

qn
, (1)

where pn

qn
are the rational approximations of α (obtained by the continued

fraction algorithm). As β grows, the Diophantine approach becomes less and
less efficient, until it ceases to work, while the opposite happens for the
Liouville approach.

As discussed before, those lines of attack lead to the solution of the Ten
Martini problem in a very large region of the parameters, which is both
generic and of full Lebesgue measure. However there is no reason to expect
that one could cover the whole parameter range by this Liouville/Diophantine
dichotomy. Actually our analysis seems to indicate the existence of a critical
range, β ≤ | lnλ| ≤ 2β, where one is close enough to the rationals to make the
small divisor problems intractable (so that, in particular, localization does
not hold in the full range of phases for which it holds for larger λ), but not
close enough so that one can borrow their gaps.

In order to go around the (seemingly) very real issues present in the
critical range, we will use a somewhat convoluted argument which proceeds by
contradiction. The contradiction argument allows us to exploit the following
new idea: roughly, absence of Cantor spectrum is shown to imply much better,
irrealistically good estimates. Still, those “fictitious” estimates are barely
enough to cover the critical range of parameters, and we are forced to push
the more direct approaches close to their technical limits.

We will need to apply this trick both in the Liouvillian side and in the
Diophantine side. In the Liouvillian side, it implies improved continuity es-
timates for the dependence of the spectrum on the frequency. In the Dio-
phantine side, it immediately solves the “non-commutative” part of Floquet
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reducibility: what remains to do is to solve the cohomological equation. Un-
fortunately, this can not be done directly. Instead, what we pick up from the
(“soft”) analysis of the cohomological equation is used to complement the
(“hard”) analysis of localization.

In the following sections we will succesively describe the analytic exten-
sion trick, the Liouville estimates, the two aspects of the Diophantine side
(reducibility and localization), and we will conclude with some aspects of the
proof of localization.

2 Analytic Extension

In Kotani theory, the complex analytic properties of Weyl’s m-functions are
used to describe the absolutely continuous component of the spectrum of an
ergodic Schrödinger operator. However, it can also be interpreted as a theory
about certain dynamical systems, cocycles.

We restrict to the case of the almost Mathieu operator. A formal solution
of Hλ,α,θu = Eu, u ∈ C

Z, satisfies the equation
(
E − 2λ cos 2π(θ + nα) −1

1 0

)

·
(
un
un−1

)

=
(
un+1

un

)

. (2)

Defining Sλ,E(x) =
(
E − 2λ cos 2πx −1

1 0

)

, the importance of the products

Sλ,E(θ + (n − 1)α) · · ·Sλ,E(θ) becomes clear. Since Sλ,E are matrices in

SL(2,C), which has a natural action on C,
(
a b
c d

)

· z = az+b
cz+d , this leads

to the consideration of the dynamical system

(α, Sλ,E) : R/Z × C → R/Z × C (3)
(x,w) �→ (x+ α, Sλ,E(x) · w) ,

which is the projective presentation of the almost Mathieu cocycle.
An invariant section for the cocycle (α, Sλ,E) is a function m : R/Z → C

such that Sλ,E(x) ·m(x) = m(x+α). The existence of a (sufficiently regular)
invariant section is of course a nice feature, as it in a sense means that the
cocycle does not see the whole complexity of the group SL(2,C): the cocycle
is conjugate to a cocycle in a simpler group (of triangular matrices). The
existence of two distinct invariant sections means that the simpler group is
isomorphic to an even simpler, abelian group (of diagonal matrices).

It turns out that the cocycle is well behaved when E belongs to the resol-
vent set C \Σλ,α: it is hyperbolic, which in particular means the existence of
two continuous invariant sections. Moreover, the dependence of the invariant
sections on E is analytic. Kotani showed that the existence of an open inter-
val J in the spectrum where the Lyapunov exponent is zero allows one to use
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the Schwarz reflection principle with respect to E, and to conclude that the
invariant sections can be analytically continued through J . Thus for E ∈ J ,
there are still two continuous invariant sections.

A crucial new idea is that those invariant sections are actually analytic
also in the other variable.

Theorem 2. Let 0 < λ ≤ 1, α ∈ R \ Q. Let J ∈ Σλ,α be an open interval.
For E ∈ J , there exists an analytic map BE : R/Z → SL(2,R) such that

BE(x+ α) · Sλ,E(x) ·BE(x)−1 ∈ SO(2,R) , (4)

that is, (α, Sλ,E) is analytically conjugate to a cocycle of rotations. Moreover,
(x,E) �→ BE(x) is analytic for (x,E) ∈ R/Z × J .

The proof uses the analyticity of the almost Mathieu cocycle (α, Sλ,E)
coupled with an analytic extension (Hartogs) argument.

3 The Liouvillian Side

The rational approximation argument centers around two estimates, on the
size of gaps for rational frequencies, and on the modulus of continuity (in the
Hausdorff topology) of the spectrum as a function of the frequency.

3.1 Gaps for Rational Approximants

The best effective estimate for the size of gaps had been given in [11], which
established that all gaps of Σλ, pq (except the central collapsed gap for q even)
have size at least C(λ)−q, where C(λ) is some explicit constant (for instance,
C(1) = 8). Such effective constants are not good enough for our argument
(for instance, it is important to have C(λ) close to 1 when λ is close to 1).
On the other hand, we only need asymptotic estimates, addressing rationals
p
q approximating some given irrational frequency for which we want to prove
Cantor spectrum.

Theorem 3. Let α ∈ R \ Q, λ > 0. For every ε > 0, if pq is close enough to
α then all open gaps of Σλ, pq have size at least e−(| lnλ|+ε)q/2.

It was pointed out to us by Bernard Helffer (during the Qmath9 confer-
ence) that this asymptotic estimate does not hold under the sole assumption
of q → ∞, as is demonstrated by the analysis of Helffer and Sjostrand, so it
is important to only consider approximations of a given irrational frequency.

The proof starts as in [11], which gives a global inequality relating all
bands in the spectrum. We then use the integrated density of states to get a
better (asymptotic) estimate on the position of bands in the spectrum. Using
the Thouless formula, we get an asymptotic estimate for the size of gaps
near a given frequency α and near a given energy E ∈ Σλ,α in terms of the
Lyapunov exponent Lλ,α(E). Theorem 1 then leads to the precise estimate
above.
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3.2 Continuity of the Spectrum

The best general result on continuity of the spectrum was obtained in [6], 1/2-
Hölder continuity. Coupled with the gap estimate for rational approximants,
we get the following contribution to the Dry Ten Martini problem.

Theorem 4. If e−β < λ < eβ then all gaps of Σλ, pq are open.

Unfortunately this cannot be complemented by any Diophantine method
that in one way or another requires localization, as it would miss the para-
meters such that | lnλ| = β > 0. Indeed, there are certain reasons to believe
that, for any θ operator Hλ,α,θ has no exponentially decaying eigenfunctions
for λ ≤ eβ .

Better estimates on continuity of the spectrum were obtained by [14] in
the Diophantine range, but these estimates get worse in the critical range
and can not be used. What we do instead is a “fictitious” improvement based
on Theorem 2.

Theorem 5. Let α ∈ R \ Q, λ > 0. If J ⊂ intΣλ,α is a closed interval then
there exists C > 0 such that for every E ∈ J , and for every α′ ∈ R, there
exists E′ ∈ Σλ,α′ with |E − E′| < C|α− α′|.

This estimate, Lipschitz continuity, is obtained in the range 0 < λ ≤ 1
using Theorem 2 and a direct dynamical estimate on perturbations of cocycles
of rotations.

This result can be applied in an argument by contradiction:

Theorem 6. If e−2β < λ < e2β then Σλ,α is a Cantor set.

4 The Diophantine Side

The Diophantine side is ruled by small divisor considerations. Two traditional
small divisor problems are associated to quasiperiodic Schrödinger operators:
localization for large coupling and Floquet reducibility for small coupling.
Those two problems are largely related by Aubry duality.

While originally both problems were attacked by perturbative methods
(very large coupling for localization and very small coupling for reducibility,
depending on specific Diophantine conditions), powerful non-perturbative es-
timates are now available for the localization problem. For this reason, all the
effective “hard analysis” we will do will be concentrated in the localization
problem. However, those estimates by themselves are insufficient. We will
need an additional soft analysis argument (again analytic extension), car-
ried out for the reducibility problem under the assumption of non-Cantor
spectrum, to improve (irrealistically) the localization results.
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4.1 Reducibility

We say that (α, Sλ,E) is reducible if it is analytically conjugate to a constant
cocycle, that is, there exists an analytic map B : R/Z → SL(2,R) such that
B(x+ α) · Sλ,E(x) ·B(x)−1 is a constant A∗.

An important idea is that (α, Sλ,E) is much more likely to be reducible
if one assumes that E ∈ intΣλ,α, 0 < λ ≤ 1. Indeed most of reducibility is
taken care by Theorem 2, which simplifies the problem to proving reducibility
for an analytic cocycle of rotations. This is a much easier task, which reduces
to consideration of the classical cohomological equation

φ(x) = ψ(x+ α) − ψ(x) , (5)

which can be analysed via Fourier series: one has an explicit formula for
the Fourier coefficients ψ̂(k) = 1

e2πikα−1
φ̂(k). The small divisors arise when

‖qα‖R/Z is small, where ‖ · ‖R/Z denotes the distance to the nearest integer.
This easily takes care of the case β = 0, but for β > 0 the information

given by Theorem 2 is not quantitative enough to conclude. The analysis
of the cohomological equation gives still the following interesting qualitative
information.

Theorem 7. Let α ∈ R\Q and let 0 < λ ≤ 1. Assume that β <∞. Let Λλ,α
be the set of E ∈ Σλ,α such that (α, Sλ,E) is reducible. If Λλ,α ∩ intΣλ,α has
positive Lebesgue measure then Λλ,α has non-empty interior.

The proof of this theorem uses again ideas from analytic extension.
Let N = Nλ,α : R → [0, 1] be the integrated density of states. One of

the key ideas of [22] is that if (α, Sλ,E) is reducible for some E ∈ Σλ,α such
that N(E) ∈ αZ + Z then E is the endpoint of an open gap. The argument
is particular to the cosine potential, and involves Aubry duality. It, in fact,
extends to the case of any analytic function such that the dual model (which
in general will be long-range) has simple spectrum.

Since an open subset of Σλ,α must intersect {E ∈ Σλ,α, N(E) ∈ αZ+Z},
we immediately obtain Cantor spectrum in the entire range of β = 0 just
from the reducibility considerations alone. Note that β = 0 is strictly stronger
than the Diophantine condition, and we did not use any localization result.
As noted above, this β = 0 result extends to quasiperiodic potentials defined
by analytic functions under the condition that the Lyapunov exponent is zero
on the spectrum1 and that the dual model has simple spectrum (it is actually
enough to require that spectral multiplicities are nowhere dense).

For 0 < β < ∞ it follows similarly that the hypothesis of the previous
theorem must fail:

Corollary 1. Let α ∈ R\Q and let 0 < λ ≤ 1. If β <∞ then Λλ,α∩ intΣλ,α
has zero Lebesgue measure.

1This condition holds for all analytic functions for sufficiently small λ (in a non-
perturbative way) so that the result of [10] applies, thus by [9] L(E) is zero on the
spectrum for all irrational α.
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4.2 Localization and Reducibility

Aubry duality gives the following relation between reducibility and local-
ization. If E ∈ Σλ,α is such that N(E) /∈ αZ + Z then the following are
equivalent:

1. (α, Sλ,E) is reducible,
2. There exists θ ∈ R, such that 2θ ∈ ±N(E) + 2αZ + 2Z and λ−1E is

a localized eigenvalue (an eigenvalue for which the corresponding eigen-
function exponentially decays) of Hλ−1,α,θ.

Remark 1. When N(E) ∈ αZ + Z, (1) still implies (2), but it is not clear
that (2) implies (1) unless β = 0 (which covers the case treated in [22]).
This is not however the main reason for us to avoid treating directly the case
N(E) ∈ αZ + Z.

Remark 2. The approach of [22] is to obtain a dense subset of {E ∈ Σλ,α,
N(E) ∈ αZ + Z} for which (α, Sλ,E) is reducible, for 0 < λ < 1 and α
satisfying the Diophantine condition ln qn+1 = O(ln qn), as a consequence of
localization for Hλ−1,α,0 and Aubry duality. Such a localization result (for
θ = 0) is however not expected to hold in the critical range of α, see more
discussion in the next section.

Thus proving localization of Hλ−1,α,θ for a large set of θ allows one to
conclude reducibility of (α, Sλ,E) for a large set of E. Coupled with Corollary
1, we get the following criterium for Cantor spectrum.

Theorem 8. Let α ∈ R \ Q, 0 < λ ≤ 1. Assume that β < ∞. If Hλ−1,α,θ

displays localization for almost every θ ∈ R then Σλ,α (and hence Σλ−1,α) is
a Cantor set.

5 A Localization Result

In order to prove the Main Theorem, it remains to obtain a localization result
that covers the pairs α ∈ R \Q and λ > 1 which could not be treated by the
Liouville method, namely the parameter region lnλ ≥ 2β.

In proving localization of Hλ,α,θ, two kinds of small divisors intervene,

1. The usual ones for the cohomological equation, arising from q ∈ Z \ {0}
for which ‖qα‖R/Z is small,

2. Small denominators coming from q ∈ Z such that ‖2θ + qα‖R/Z is small.

Notice that for any given α, a simple Borel-Cantelli argument allows one
to obtain that for almost every θ the small denominators of the second kind
satisfy polynomial lower bounds:

‖2θ + qα‖R/Z >
κ

(1 + q)2
. (6)
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When θ = 0, or more generally 2θ ∈ αZ + Z, which is the case linked to
Cantor spectrum in [22], the small divisors of the second type are exactly
the same as the first type.2 When β > 0, where the small denominators of
the first type can be exponentially small, θ = 0 is thus much worse behaved
than almost every θ, leading to a smaller range where one should be able
to prove localization. More precisely, one expects that localization holds for
almost every θ if and only if lnλ > β, and for θ = 0 if and only if lnλ > 2β.
Even with all the other tricks, this would leave out the parameters such that
lnλ = 2β > 0.

In any case, the following localization result is good enough for our pur-
poses.

Theorem 9. Let α ∈ R \ Q. Assume that lnλ > 16
9 β. Then Hλ,α,θ displays

localization for almost every θ ∈ R.

This is the most technical result of [2]. We use the general setup of [13],
however our key technical procedure is quite different.

It is well known that to prove localization ofHλ,α,θ it suffices to prove that
all polynomially bounded solutions of Hλ,α,θΨ = EΨ decay exponentially.

We will use the notation G[x1,x2](x, y) for matrix elements of the Green’s
function (H − E)−1 of the operator Hλ,α,θ restricted to the interval [x1, x2]
with zero boundary conditions at x1 − 1 and x2 + 1.

It can be checked easily that values of any formal solution Ψ of the equa-
tion HΨ = EΨ at a point x ∈ I = [x1, x2] ⊂ Z can be reconstructed from
the boundary values via

Ψ(x) = −GI(x, x1)Ψ(x1 − 1) −GI(x, x2)Ψ(x2 + 1) . (7)

The strategy is to find, for every large integer x, a large interval I = [x1, x2] ⊂
Z containing x such that both G(x, x1) and G(x, x2) are exponentially small
(in the length of I). Then, by using the “patching argument” of multiscale
analysis, we can prove that Ψ(x) is exponentially small in |x|. (The key prop-
erty of Ψ , that it is a generalized eigenfunction, is used to control the bound-
ary terms in the block-resolvent expansion.)

Fix m > 0. A point y ∈ Z will be called (m, k)-regular if there exists an
interval [x1, x2], x2 = x1 + k − 1, containing y, such that

|G[x1,x2](y, xi)| < e−m|y−xi|, and dist(y, xi) ≥
1
40
k; i = 1, 2 .

We now have to prove that every x sufficiently large is (m, k)-regular for
appropriate m and k. The precise procedure to follow will depend strongly
on the position of x with respect to the sequence of denominators qn (we
assume that x > 0 for convenience). Let bn = max{q8/9n , 1

20qn−1}. Let n be
such that bn < x ≤ bn+1. We distinguish between the two cases:

2Actually there is an additional very small denominator, 0 of the second type,
which leads to special considerations, but is not in itself a show stopper.
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1. Resonant: meaning |x− �qn| ≤ bn for some � ≥ 1 and
2. Non-resonant: meaning |x− �qn| > bn for all � ≥ 0.

Theorem 9 is a consequence then of the following estimates:

Lemma 1. Assume that θ satisfies (6). Suppose x is non-resonant. Let s ∈
N ∪ {0} be the largest number such that sqn−1 ≤ dist(x, {�qn}�≥0). Then for
any ε > 0 for sufficiently large n,

1. If s ≥ 1 and lnλ > β, x is (lnλ− ln qn
qn−1

− ε, 2sqn−1 − 1)-regular.
2. If s = 0 then x is either (lnλ − ε, 2[ qn−1

2 ] − 1) or (lnλ − ε, 2[ qn2 ] − 1) or
(lnλ− ε, 2qn−1 − 1)-regular.

Lemma 2. Let in addition lnλ > 16
9 β. Then for sufficiently large n, every

resonant x is ( lnλ
50 , 2qn − 1)-regular.

Each of those estimates is proved following a similar scheme, though the
proof of Lemma 2 needs additional bootstrapping from the proof of Lemma
1. All small denominators considerations are entirely captured through the
following concept:

We will say that the set {θ1, . . . , θk+1} is ε-uniform if

max
z∈[−1,1]

max
j=1,...,k+1

k+1∏

�=1
� �=j

|z − cos 2πθ�)|
| cos 2πθj − cos 2πθ�)|

< ekε . (8)

The uniformity of some specific sequences can then be used to show that
some y ∈ Z is regular following the scheme of [13]. In this approach, the
goal is to find two non-intersecting intervals, I1 around 0 and I2 around y, of
combined length |I1|+ |I2| = k+1, such that we can establish the uniformity
of {θi} where θi = θ + (x + k−1

2 )α, i = 1, . . . , k + 1, for x ranging through
I1 ∪ I2.

The actual proof of uniformity depends on the careful estimates of
trigonometric products along arithmetic progressions θ+ jα. Since

∫
ln |E −

cos 2πθ|dθ = − ln 2 for any |E| ≤ 1 such estimates are equivalent to the
analysis of large deviations in the appropriate ergodic theorem. A simple
trigonometric expansion of (8) shows that uniformity involves equidistrib-
ution of the θi along with cumulative repulsion of ±θi(mod 1)’s, and thus
involves both kinds of small divisors previously mentioned.
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Abstract. We use recent results on precise coupling terms in the optimal supera-
diabatic basis in order to determine exponentially small transition probabilities in
the adiabatic limit of time-dependent two-level systems. As examples, we discuss
the Landau-Zener and the Rosen-Zener models.
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1 Introduction

Transitions between separated energy levels of slowly time-dependent quan-
tum systems are responsible for many important phenomena in physics, chem-
istry and even biology. In the mathematical model the slow variation of the
Hamiltonian is expressed by the smallness of the adiabatic parameter ε in the
Schrödinger equation

(
i∂s −H(εs)

)
φ(t) = 0 , (1)

where H(t) is a family of self-adjoint operator on a suitable Hilbert space.
In order to see in (1) nontrivial effects from the time-variation of the Hamil-
tonian, one has to follow the solutions up to times s of order ε−1. Alternatively
one can transform (1) to the macroscopic time scale t = εs, resulting in the
equation

(
iε∂t −H(t)

)
φ(t) = 0 , (2)

and study solutions of (2) for times t of order one. Often one is interested in
the situation where the Hamiltonian is time-independent for large negative
and positive times. Then one can consider the scattering limit and the aim is
to compute the scattering amplitudes. In the simplest and at the same time
paradigmatic example the Hamiltonian is just a 2 × 2 matrix

H(t) =
(
Z(t) X(t)
X(t) −Z(t)

)

,

which can be chosen real symmetric and traceless without essential loss of
generality [1]. With this choice for H(t), the Schrödinger equation (2) is

V. Betz and S. Teufel: Landau-Zener Formulae from Adiabatic Transition Histories, Lect.
Notes Phys. 690, 19–32 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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just an ordinary differential equation for the C
2-valued function φ(t). But

even this simple system displays a very interesting behavior, of which we
will give an informal description here in the introduction. The mathematical
mechanism which generates this behavior will be explained in the main body
of this paper.

We will assume that H(t) has two distinct eigenvalues {E+(t), E−(t)} for
any t and approaches constant matrices as t→ ±∞. Then also the eigenvalues
{E+(t), E−(t)} and the orthonormal basis {v+(t), v−(t)} of R

2 consisting of
the real eigenvectors of H(t) have limits as t → ±∞. By definition, the
transition probability from the “upper” to the “lower” eigenstate is given by

P = lim
t→∞

|φ−(t)|2 := lim
t→∞

|〈v−(t), φ(t)〉C2 |2 , (3)

where φ(t) is a solution of (2) with

lim
t→−∞

|φ−(t)|2 = 1 − lim
t→−∞

|φ+(t)|2 = 0 . (4)

Despite the presence of a natural small parameter, the adiabatic parameter
ε � 1, it is far from obvious how to compute P even to leading order in ε.
This is because the transition amplitudes connecting different energy levels
are exponentially small with respect to ε, i.e. of order O(e−c/ε) for some
c > 0, and thus have no expansion in powers of ε.

The result of a numerical computation of φ−(t) for a typical Hamiltonian
H(t) is displayed in Fig. 1a. After rising to a value which is of order ε, |φ−|
falls off again and finally, in the regime whereH(t) is approximately constant,
settles for a value of order e−c/ε.

It is no surprise that supt∈R
|φ−(t)| is of order ε: this is just a consequence

of the proof of the adiabatic theorem [8], and in fact we perform the relevant
calculation in Sect. 2. There we see that the size of φ−(t) is determined by
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Fig. 1. This figure shows the lower components of a numerical solution of (5) for
ε = 1/6. In (a), the lower component in the adiabatic basis rises to a value order
ε before approaching its exponentially small asymptotic value. In (b), the lower
component in the optimal superadiabatic basis rises monotonically to its final value.
Note the different axes scalings, as the asymptotic values in both pictures agree
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the size of the off-diagonal elements of the adiabatic Hamiltonian Had(t).
The latter is obtained by expressing (2) in the adiabatic basis {v+(t), v−(t)}.
More precisely, let U0(t) be the orthogonal matrix that takes the adiabatic
basis into the canonical basis. Then multiplication of (2) with U0(t) from the
left leads to

(
iε∂t −Had(t)

)
φad(t) := U0(t)

(
iε∂t −H(t)

)
U∗

0 (t)U0(t)φ(t) = 0 , (5)

where Had(t) = diag(E+(t), E−(t)) − iεU0(t)U̇∗
0 (t). Clearly, the off-diagonal

elements of the matrix Had are of order ε, and φ−(t) is just the second
component of φad(t). However, the O(ε) smallness of the coupling in the
adiabatic Hamiltonian does not explain the exponentially small scattering
regime in Fig. 1a. In the adiabatic basis, there is no easy way to see why this
effect should take place, although with some goodwill it may be guessed by
a heuristic calculation to be presented in the next section.

A natural strategy to understand the exponentially small scattering am-
plitudes goes back to M. Berry [1]: the solution of (2) with initial condition
(4) remains in the positive adiabatic subspace spanned by v+(t) only up to
errors of order ε. Hence one should find a better subspace, the optimal su-
peradiabatic subspace, in which the solution remains up to exponentially small
errors for all times. Since we are ultimately interested in the transition prob-
abilities, at the same time this subspace has to coincide with the adiabatic
subspace as t→ ±∞. One way to determine the superadiabatic subspaces is
to optimally truncate the asymptotic expansion of the true solution in powers
of ε, as Berry [1] did. Alternatively one can look for a time-dependent basis of
C

2 such that the analogues transformation to (5) yields a Hamiltonian with
exponentially small off-diagonal terms. To do so, one first constructs the n-th
superadiabatic basis recursively from the adiabatic basis for any n ∈ N. Let us
write Unε (t) for the transformation taking the n-th superadiabatic basis into
the canonical one. Then as in (5) the Schrödinger equation takes the form

(
iε∂t −Hnε (t)

)
φn(t) = 0 , (6)

where

Hnε (t) =

(
ρnε (t) εn+1cnε (t)

εn+1c̄nε (t) −ρnε (t)

)

and φn(t) = Unε (t)φ(t) =
(
φn+(t)
φn−(t)

)

.

(7)
Above, ρnε = 1

2 + O(ε2). While the off-diagonal elements of Hnε indeed are
of order εn+1, the n-th superadiabatic coupling function cnε grows like n! so
that the function n �→ εn+1cnε will diverge for each ε as n → ∞. How-
ever, for each ε > 0 there is an nε ∈ N such that εn+1cnε takes its min-
imal value for n = nε. This defines the optimal superadiabatic basis. In
this basis the off-diagonal elements of Hnε (t) are exponentially small for all
t. As a consequence, also the lower component φn−(t) of the solution with
limt→−∞ φn−(t) = limt→−∞ φ−(t) = 0 is exponentially small, as illustrated in



22 V. Betz and S. Teufel

Fig. 1b, and one can compute the scattering amplitude by first order pertur-
bation theory.

Berry and Lim [1, 2] showed on a non-rigorous level that φn−(t) is not
only exponentially small in ε but has the universal form of an error function,
a feature also illustrated in Fig. 1(b). A rigorous derivation of the optimal
superadiabatic Hamiltonian and of the universal transition histories has been
given recently in [3] and [4].

The aim of this note is to explain certain aspects of the results from [4]
and to show how to obtain scattering amplitudes from them. In Sect. 2 we
basically give a more detailed and also more technical introduction to the
problem of exponentially small non-adiabatic transitions. Section 3 contains
a concise summary of the results obtained in [4]. In order to apply these re-
sults to the scattering situation, we need some control on the time decay of
the error estimates appearing in our main theorem. In Sect. 4 we use standard
Cauchy estimates to obtain such bounds and give a general recipe for obtain-
ing rigorous proofs of scattering amplitudes. We close with two examples, the
Landau-Zener model and the Rosen-Zener model. While the Landau-Zener
model displays, in a sense to be made precise, a generic transition point, the
Rosen-Zener model is of a non-generic type, which is not covered by existing
rigorous results.

2 Exponentially Small Transitions

From now on we study the Schrödinger equation (2) with the Hamiltonian

Hph(t) =
(
Z(t) X(t)
X(t) −Z(t)

)

= ρ(t)
(

cos θph(t) sin θph(t)
sin θph(t) −cos θph(t)

)

. (8)

Thus Hph(t) is a traceless real-symmetric 2 × 2-matrix, and the eigenvalues
of Hph(t) are ±ρ(t) = ±

√
X(t)2 + Z(t)2. We assume that the gap between

them does not close, i.e. that 2ρ(t) ≥ g > 0 for all t ∈ R. As to be detailed
below, we assume that X and Z are real-valued on the real axis and analytic
on a suitable domain containing the real axis. Moreover, in order to be able
to consider the scattering limit it is assumed that Hph(t) approaches limits
H± sufficiently fast as t→ ±∞.

Before proceeding we simplify (8) by switching to the natural time scale

τ(t) = 2
∫ t

0

ds ρ(s) . (9)

Since ρ(t) is assumed to be strictly positive, the map t �→ τ is a bijection of
R. In the natural time scale the Schrödinger equation (2) becomes

(
iε∂τ −Hn(τ)

)
φ(τ) = 0 (10)
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with Hamiltonian

Hn(τ) =
1
2

(
cos θn(τ) sin θn(τ)
sin θn(τ) −cos θn(τ)

)

, (11)

where θn(τ) = θph(t(τ)). As a consequence we now deal with a Hamiltonian
with constant eigenvalues equal to ± 1

2 , which is completely defined through
the single real-analytic function θn.

The transformation (5) to the adiabatic basis, i.e. the orthogonal matrix
that diagonalizes Hn(τ), is

U0(τ) =
(

cos(θn(τ)/2) sin(θn(τ)/2)
sin(θn(τ)/2) − cos(θn(τ)/2)

)

. (12)

Multiplying (10) from the left with U0(τ) yields the Schrödinger equation in
the adiabatic representation

(
iε∂τ −Ha

ε (τ)
)
φa(τ) = 0 , (13)

where

Ha
ε (τ) =






1
2

iε
2
θ′n(τ)

− iε
2
θ′n(τ) −1

2




 and φa(τ) = U0(τ)φ(τ) =

(
φ+(τ)
φ−(τ)

)

.

(14)
θ′n is called the adiabatic coupling function.

The exponentially small scattering amplitude in Fig. 1a) can be guessed
by a heuristic calculation. We solve (13) for φ−(τ) using φ+(τ) = e−

iτ
2ε +O(ε),

which holds according to the adiabatic theorem [8], and variation of constants,
i.e.

φ−(τ) =
i
ε

e
iτ
2ε

∫ τ

−∞
dσ e−

iσ
2ε

(

− iε
2
θ′n(σ)

)

φ+(σ)

=
1
2

e
iτ
2ε

∫ τ

−∞
dσ θ′n(σ) e−

iσ
ε + O(ε) . (15)

Integration by parts yields

φ−(τ) =
iε
2
θ′n(τ) − iε

2
e

iτ
2ε

∫ τ

−∞
dσ θ′′n(σ) e−

iσ
ε + O(ε) . (16)

The first term in this expression is of order ε and not smaller. This strongly
suggests that the O(ε) error estimate in the adiabatic theorem is optimal,
which we have seen to be indeed the case. However, no conclusion can be
inferred from (16) for the scattering regime τ → ∞ since θ′n vanishes there.

The key to the heuristic treatment of the scattering amplitude is to calcu-
late the integral in (15) not by integration by parts but by contour integration
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in the complex plane. For the sake of a simple argument let us assume here
that θ′n is a meromorphic function. Let τc be the location of the pole in the
lower complex half plane closest to the real line and γ its residue, then from
(15) and contour integration around the poles in the lower half plane we read
off

lim
τ→∞

|φ−(τ)|2 = π2γ2 e−
2Imτc

ε + O(ε2) . (17)

Strictly speaking (17) tells us nothing new: while the explicit term is expo-
nentially small in ε, the error term is of order ε2 and thus the statement is
not better than what we know from the adiabatic theorem already. Never-
theless it turns out that the exponential factor appearing here actually yields
the correct asymptotic behavior of the transition probability. Our heuristic
argument also correctly attributes the dominant part of the transition to the
pole of θ′n closest to the real axis. The prefactor in (17), however, is wrong,
the correct answer being

lim
τ→∞

|φ−(τ)|2 = 4 sin2
(πγ

2

)

e−
2Imτc

ε (1 + O(εα)) , (18)

for some α > 0. Expression (18) is a generalization of the Landau-Zener
formula and was first rigorously derived in [7].

The problem to solve when trying to rigorously treat exponentially small
transitions and to arrive at the correct result (18) is to control the solution of
(2) up to errors that are not only exponentially small in ε, but smaller than
the leading order transition probability. As a consequence a naive perturba-
tion calculation in the adiabatic basis will not do the job.

The classical approach [7] to cope with this is to solve (2) not on the real
axis but along a certain path in the complex plane, where the lower compo-
nent of the solution is always exponentially small. The comparison with the
solution on the real line is made only in the scattering limit at τ = ±∞. The
trick is to choose the path in such a way that it passes through the relevant
singularity of θ′n in the complex plane. In a neighborhood of the singularity
one can solve (13) explicitly and thereby determine the leading order con-
tribution to the transition probability. Moreover, away from the transition
point the path must be chosen such that the lower component φ−(τ) re-
mains smaller than the exponentially small leading order contribution from
the transition point for all τ along this path. There are two drawbacks of
this approach: the technical one is that there are examples (see the Rosen-
Zener model below), where such paths do not exist. On the conceptual side,
this approach yields only the scattering amplitudes, but gives no information
whatsoever about the solution for finite times.

Our approach is motivated by the findings of Berry [1] and of Berry and
Lim [2]. Instead of solving (13) along a path in the complex plane we solve
the problem along the real axis but in a super-adiabatic basis instead of the
adiabatic one, i.e. we solve (6) with the Hamiltonian (7) and the optimal n(ε).
While the off-diagonal elements of the Hamiltonian in the adiabatic basis are
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only of order ε, cf. (14), the off-diagonal elements of the Hamiltonian in the
optimal superadiabatic basis are exponentially small, i.e. of order e−c/ε.

In order to control the exponentially small transitions, we will give pre-
cise exponential bounds on the coupling εnε+1cnε

ε (τ) away from the transi-
tion regions and explicitly determine the asymptotic form of cε(τ) within
each transition region. Since the superadiabatic bases agree asymptotically
for t → ±∞ with the adiabatic basis, the scattering amplitudes agree in all
these bases. In the optimal superadiabatic basis the correct transition proba-
bilities (18) now follow from a first order perturbation calculation analogous
to the one leading to (17) in the adiabatic basis. However, in addition to
the scattering amplitudes we obtain approximate solutions for all times, i.e.
“histories of adiabatic quantum transitions” [1]. As is illustrated in Fig. 1b,
these are monotonous and asymptotically take the form of an error function.

3 The Hamiltonian
in the Super-Adiabatic Representation

In [4] we formulate our results for the system (10) and (11). However, we
have to keep in mind that (10) and (11) arise from the physical problem (2)
and (8) through the transformation to the natural time scale (9). Therefore,
to be physically relevant, the assumptions must be satisfied by all θn arising
from generic Hamiltonians of the form (8). As observed in [2], see also [4], for
such θn the adiabatic coupling function θ′n is real analytic and at its complex
singularities z0 closest to the real axis it has the form

θ′n(z − z0) =
−iγ
z − z0

+
N∑

j=1

(z − z0)−αjhj(z − z0) , (19)

where |Imz0| > 0, γ ∈ R, αj < 1 and hj is analytic in a neighborhood of 0
for j = 1, . . . , N .

The following norms on the real line capture exactly the behavior (19) of
the complex singularities of θ′n. They are at the heart of the analysis in [4].

Definition 1. Let τc > 0, α > 0 and I ⊂ R be an interval. For f ∈ C∞(I)
we define

‖f‖(I,α,τc)
:= sup

t∈I
sup
k≥0

∣
∣∂kf(t)

∣
∣

τc
α+k

Γ (α+ k)
≤ ∞ (20)

and
Fα,τc(I) =

{

f ∈ C∞(I) : ‖f‖(I,α,τc)
<∞

}

.

The connection of these norms with (19) relies on the Darboux Theorem for
power series and is described in [4]. Let us just note here that θ′n as given
in (19) is an element of F1,τc({τr}) for τc = Im(z0) and τr = Re(z0), while
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the second term of (19) is in Fβ,τc({τr}) with β = maxj αj . In order to con-
trol the transitions histories, the real line will be segmented into intervals
I, which are either considered to be a small neighborhood of a transition
point or to contain no transition point. Assumption 1 below thus applies to
intervals without transition point and Assumption 2 generically holds near a
transition point. In the rest of this section we drop the subscript n for the
natural time scale in order not to overburden our notation.

Assumption 1: For a compact interval I and δ ≥ 0 let θ′(τ) ∈ F1,τc+δ(I).

Assumption 2: For γ, τr, τc ∈ R let

θ′0(t) = i γ
(

1
τ − τr + iτc

− 1
τ − τr − iτc

)

be the sum of two complex conjugate first order poles located at τr ± iτc with
residues ∓iγ. On a compact interval I ⊂ [τr − τc, τr + τc] with τr ∈ I we
assume that

θ′(τ) = θ′0(τ) + θ′r(τ) with θ′r(τ) ∈ Fα,τc(I) (21)

for some γ, τc, τr ∈ R, 0 < α < 1.

It turns out that under Assumption 2 the optimal superadiabatic basis is
given as the nth

ε superadiabatic basis where 0 ≤ σε < 2 is such that

nε =
τc
ε
− 1 + σε is an even integer. (22)

The two main points of the following theorem are: outside the transition
regions, the off-diagonal elements of the Hamiltonian in the optimal supera-
diabatic basis are bounded by (24), while within each transition region they
are asymptotically equal to g(ε, τ) as given in (ii).

Theorem 1. (i) Let H satisfy Assumption 1. Then there exists ε0 > 0 such
that for all ε ∈ (0, ε0] and all τ ∈ I the elements of the superadiabatic Hamil-
tonian (7) and the unitary Unε

ε (τ) with nε as in (22) satisfy
∣
∣
∣
∣ρ
nε
ε (τ) − 1

2

∣
∣
∣
∣ ≤ ε2φ1

(

‖θ′‖(I,1,τc+δ)

)

(23)

∣
∣εnε+1cnε

ε (τ)
∣
∣ ≤

√
ε e−

τc
ε (1+ln τc+δ

τc
)φ1

(

‖θ′‖(I,1,τc+δ)

)

(24)

and
‖Unε
ε (τ) − U0(τ)‖ ≤ εφ1

(

‖θ′‖(I,1,τc+δ)

)

. (25)

Here φ1 : R
+ → R

+ is a locally bounded function with φ1(x) = O(x) as x→ 0
which is independent of I and δ.
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(ii) Let H satisfy Assumption 2 and define

g(ε, τ) = 2i
√

2ε
πτc

sin
(
πγ
2

)
e−

τc
ε e−

(τ−τr)2

2ετc cos
(
τ−τr
ε − (τ−τr)3

3ετc2 + σετ
τc

)

.

There exists ε0 > 0 and a constant C < ∞ such that for all ε ∈ (0, ε0] and
all τ ∈ I ∣

∣εnε+1cnε
ε (τ) − g(ε, τ)

∣
∣ ≤ Cε

3
2−αe−

τc
ε . (26)

Furthermore, the assertions of part (i) hold with δ = 0.

Remark 1. In [4] we show in addition that the error bounds in Theorem 1 are
locally uniform in the parameters α, γ and τc. This generality is not needed
here and thus omitted from the statement.

In order to pass to the scattering limit it is now necessary to show that
the errors in part (i) of Theorem 1, i.e. in the regions away from the transition
points, are integrable.

4 The Scattering Regime

We will treat the scattering regime by using first order perturbation theory
on the equation in the optimal superadiabatic basis. As in (15), variation of
constants yields

φnε
− (τ) =

i
ε

e
i
ε

∫ τ
−∞ dσ ρ(σ)

∫ τ

−∞
dσ e−

i
ε

∫ σ
−∞ dν ρ(ν) c(nε, σ)φnε

+ (σ) , (27)

where we put c(nε, τ) = εnε+1cnε
ε (τ). We now replace ρnε

ε (τ) and c(nε, τ)
in (27) by the explicit asymptotic values given in Theorem 1, and use the
adiabatic approximation φnε

+ (τ) = e−
iτ
2ε + O(ε). To this end we assume that

θ′n has k poles of the form (19) at distance τc from the real axis and none
closer to the real axis. Let gj(ε, τ) be the associated coupling functions of
Theorem 1 for j = 1, . . . , k and

f1(τ) =
∣
∣
∣
∣ρ
nε
ε (τ) − 1

2

∣
∣
∣
∣ , f2(τ) = c(nε, τ)−

k∑

j=1

gj(ε, τ), f3(τ) = φnε
+ (τ)−e−

iτ
2ε .

Then
e

i
ε

∫ τ
−∞ dσ ρ(σ) = e

iτ
2ε

(

1 + O
(

ε

∫ τ

−∞
dσ f1(σ)

︸ ︷︷ ︸

=:F1(τ)

))

and
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φnε
− (τ) =

i
ε

e
iτ
2ε

(

1 + O(εF1(τ))
)∫ τ

−∞
dσ e−

iσ
2ε

(

1 + O(εF1(σ))
)

×





k∑

j=1

gj(ε, σ) − f2(σ)



φnε
+ (σ)

=
i
ε

e
iτ
2ε

∫ τ

−∞
dσ e−

iσ
ε

k∑

j=1

gj(ε, σ)

+O
(

(‖F1‖∞ + ε−1‖f3‖∞)
∫ τ

−∞
dσ|c(nε, σ)| + ε−1

∫ τ

−∞
dσ|f2(σ)|

)

.

Assuming integrability of the error terms in (23) and (24), the following
lemma can be established by straightforward computations.

Proposition 1. Let θ′n(τ) be as above and let τ �→ ‖θ′n‖({τ},1,τc+δ) be inte-
grable outside of some bounded interval and for some δ > 0. Then

φnε
− (τ) =

i
ε

e
iτ
2ε

∫ τ

−∞
dσ e−

iσ
ε

k∑

j=1

gj(ε, σ) + O(ε
1
2−αe−

τc
ε ) .

Note that the leading term in Proposition 1 is of order e−
τc
ε . Thus for α ≥ 1

2
the estimate is too weak. However, a more careful analysis of the error near
the transition points allows one to replace ε

1
2−α by ε1−α in Proposition 1,

see [5], and thus to obtain a nontrivial estimate for all α < 1.
Since the functions gj(ε, τ) are explicitly given in Theorem 1, the leading

order expression for φnε
− (τ) can be computed explicitly as well. A simple

computation, c.f. [3], yields for k = 1 that

φnε
− (τ) =

i
ε

e
iτ
2ε

∫ τ

−∞
dσ e−

iσ
ε g(ε, σ) + O(ε

1
2−αe−

τc
ε )

= sin
(πγ

2

)

e−
τc
ε e

iτ
2ε

(

erf
(

τ√
2ετc

)

+ 1
)

+ O(ε
1
2−αe−

τc
ε ) .

For more than one transition point the same computation reveals interference
effects, c.f. [5]. In the limit τ → ∞ we recover the Landau-Zener formula for
the transition probability:

|φnε
− (∞)|2 = 4 sin2

(πγ

2

)

e−
2τc

ε + O(ε
1
2−αe−

2τc
ε ) . (28)

Proposition 1 yields the transition histories as well as the transition prob-
abilities in the scattering limit for a large class of Hamiltonians under the
assumption that ‖θ′n‖({τ},1,τc+δ) is integrable at infinity for some δ > 0. At
first sight it might seems hard to establish integrability of this norm, since
it involves derivatives of θ′n of all orders. However, the following proposition
shows that ‖θ′n‖({τ},1,τc+δ) can be bounded by the supremum of the function
θ′n in a ball around τ with radius slightly larger than τc + δ.
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Proposition 2. Let α > 0 and r > 0. Assume for some δ > 0 that f is
analytic on

Br+δ = {z ∈ C : |z| ≤ r + δ} .
Then

‖f‖({0},α,r) ≤
rα

e ln ((r + δ)/r)
sup
z∈Br+δ

|f(z)| .

Proof. Put M = supz∈Br+δ
|f(z)|. By the Cauchy formula,

∂kt f(0) = k!
∮

|z|=r+δ
dz

f(z)
zk+1

≤ 2π k!M(r + δ)−k .

Therefore

∂kt f(0)
rα+k

Γ (α+ k)
≤Mrα

Γ (1 + k)
Γ (α+ k)

(
r

r + δ

)k

. (29)

The k-dependent part of the right hand side above is obviously maximal
for α = 0, and then is equal to φ(k) := k(r/(r + δ))k. φ(k) is maximal at
k = 1/ ln((r + δ)/r) with value 1/(e ln((r + δ)/r), and the claim follows by
taking the supremum over k in (29).

Hence, integrability of ‖θ′n‖({τ},1,τc+δ) follows if we can establish sufficient
decay of sup|z−τ |<τc+2δ |f(z)| as τ → ∞. We will demonstrate how to do
this for two simple examples. More elaborate examples including interference
effects can be found in [5]. We will use the transformation formula

θ′n(τ(t)) =
θ′ph(t)
2ρ(t)

=
1

2ρ(t)
d
dt

arctan
(
X

Z

)

(t) =
X ′Z − Z ′X

2ρ3
(t) . (30)

Example 1 (Landa-Zener model). The paradigmatic example is the Landau-
Zener Hamiltonian

H(t) =
(
a t
t −a

)

,

which is explicitly solvable [10] and for which the transition probabilities are
well-known. Nevertheless it is instructive to exemplify our method on this
simple model. We have X(t) = t and Z(t) = a > 0. Thus ρ2(t) = a2 + t2, and
the transformation to the natural time scale reads

τ(t) = 2
∫ t

0

√

a2 + s2 ds . (31)

From (30) one reads off that complex zeros of ρ give rise to complex singulari-
ties of θ′n. In the Landau-Zener model, ρ has two zeros at tc = ±ia. Thus (31)
yields τc = a2π

2 , and expansion of θ′n(τ) around τc shows γ = 1
3 and α = 1

3 ,
cf. [2,4]. We now apply Proposition 1 in order to pass to the scattering limit.
According to Proposition 2 we need to control the decay of |θ′n| in a finite
strip around the real axis for large |τ |. From (31) one reads off that
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|τ(t)| ≤ 2 · 2|t|
√

a2 + |t|2 ≤ 4(a2 + |t|2) ,

and thus |t2| ≥ |τ |/4−a2. From (30) and the estimates above we infer for |τ |
sufficiently large that

|θ′n(τ)| =
a

2|a2 + t(τ)2|3/2 ≤ a

2(|t(τ)|2 − a2)3/2
≤ a

2(|τ |/4 − 2a2)3/2
.

Consequently, Proposition 2 yields for every r, δ > 0 and τ ∈ R sufficiently
large that

‖θ′n‖({τ},1,r) ≤
r

e ln((r + δ)/r)
a

((|τ | − r − δ)/4 − 2a2)3/2
.

Thus τ �→ ‖θ′n‖({τ},1,r) is integrable at infinity for any r > 0, and in particular
for r = τc + 2δ. According to (28), we have therefore shown the classical
Landau-Zener formula

|φnε
− (∞)|2 = e−

a2π
ε + O(ε

1
6 e−

a2π
ε ) .

For the Landau-Zener model, the transition probabilities can also be proved
by the method of [7]. There, the anti-Stokes lines, i.e. the level lines Im(τ(t)) =
Im(τ(tc)), play an essential role. In particular, the method requires that an
anti-Stokes line emanating from the critical point tc of τ stays in a strip of
finite width around the real axis as Re(t) → ±∞. As shown in Fig. 2, this is
the case in the present example.

The previous example also shows a useful general strategy: One can use
(30) in order to find upper bounds on τ(t), which in turn yield lower bounds
on the inverse function t(τ). These can then be used in (30) to estimate the
decay at infinity of θ′n in a strip around the real axis. It is clear that this
strategy also works in cases where the Hamiltonian is not given in closed
form. Of course, things are much easier when we know θ′n explicitly. This is
the case in the following example.

Example 2 (Rosen-Zener model). In this model X(t) = 1
2(t2+1) and Z(t) =

t
2(t2+1) . Therefore τ(t) = arsinh(t), τc = Im(arsinh(i)) = π, and (30) yields
θ′n(τ) = 1/ cosh(τ) in the natural time scale. It is immediate that |θ′n(τ)| ≤
c exp(−|τ |) for large |τ | in each fixed strip around the real axis, and that
γ = 1. Since θ′n is meromorphic, 0 < α can be chosen arbitrarily small. In
summary, Propositions 1 and 2 yield

|φnε
− (∞)|2 = 4e−

π
ε + O(ε

1
2−αe−

π
ε ) .

Although the Rosen-Zener example is very easy in our picture, it is not clear
how to prove it using the methods of [7]. The reason is that there are no anti-
Stokes lines emanating from the singularity of θ′n and staying in a bounded
strip around the real axis as Re(t) → ±∞. In fact, the only relevant anti-
Stokes line remains on the imaginary axis, cf. Fig. 2.
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Fig. 2. This figure shows the Stokes and anti-Stokes lines for τ(t) in the Landau-
Zener model (Fig. 2a) and the Rosen-Zener model (Fig. 2b). Level lines of Reτ(t)
are grey, while the lines of Imτ(t) are black. The fat lines correspond to the Stokes
and anti-Stokes lines emanating from the critical point tc of τ(t) in the upper
complex half-plane. In both examples, tc = i. While in the Landau-Zener model,
two anti-Stokes lines remain in a finite strip around the real axis, the anti-Stokes
line of the Rosen-Zener model remains on the imaginary axis
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Abstract. We have developed a scattering matrix approach to coherent transport
through an adiabatically driven conductor based on photon-assisted processes. To
describe the energy exchange with the pumping fields we expand the Floquet scat-
tering matrix up to linear order in driving frequency.
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1 From an Internal Response
to a Quantum Pump Effect

The possibility to vary several parameters at the same frequency but with
different phases [1] of a coherent (mesoscopic) system opens up new prospects
for the investigation of dynamical quantum transport. The adiabatic variation
of parameters is of particular interest since at small frequencies the conduc-
tor stays close to an equilibrium state: the opening of inelastic conduction
channels is avoided and quantum mechanical phase coherence is preserved to
the fullest extend possible. The relevant physics has a simple and transparent
explanation within the scattering matrix approach.

The variation of parameters leads to a dynamic scattering geometry. Quite
generally we consider changes in the scattering geometry as an internal re-
sponse [2] in contrast to the external response generated by voltages applied
to the contacts of the conductor, see Fig. 1. In general a linear response con-
sists both of a response to an external potential oscillations, and response to
internal potentials. The internal response can be expressed with the help of
the emissivity ν(α, r). The emissivity ν(α, r) is the portion of the density of
states at r of carriers that will exit the conductor through contact α. The
emissivity relates the amplitude Iα(ω) of the current in lead α to the am-
plitude U(r, ω) of a small and slowly oscillating internal potential. At zero
temperature we have [2]

Iα(ω) = ie2ω
∫

d3rν(α, r)U(r, ω) . (1)
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I(ω) ~ V(ω)

V(ω) e -iωt
external
response

I(ω) ~ U(ω)
Ue -iωt

internal
response

Fig. 1. External and internal response: An ac current with amplitude I(ω), say,
in the left lead can arise as a response either to an oscillating potential V (t) =
V (ω)e−iωt + V (−ω)eiωt at one of the external reservoirs, or as a response to an
oscillating potential profile δU(r, t) = δu(r)

(
U(ω)e−iωt + U(−ω)eiωt

)
inside the

mesoscopic sample

Here e is an electron charge and i2 = −1. The integral in (1) runs over the
region in which the potential deviates from its equilibrium value (typically
the volume occupied by the scatterer).

The emissivity is expressed in terms of the scattering matrix S (of the
stationary scatterer) and its functional derivative with respect to the internal
potential variation δU(r, t) = δu(r)

(
U(ω)e−iωt + U(−ω)eiωt

)
:

ν(α, r) = − 1
4πi

Nr∑

β=1

[

S∗
αβ

δSαβ
δeu(r)

−
δS∗
αβ

δeu(r)
Sαβ

]

. (2)

The scattering matrix is evaluated at the Fermi energy E = µ. The summa-
tion runs over all the leads (for simplicity here assumed to be single channel)
connecting the sample to external Nr = 1, 2, 3... reservoirs.

Applying the inverse Fourier transformation to (1) gives the current Iα(t)
flowing in response to a time-dependent internal potential U(r, t). Equation
(1) can easily be generalized to find the response to an arbitrary field or
parametric variation of the scattering geometry [3]. To arrive at a general
expression we remember that the scattering matrix depends on the internal
potential U . That in turn makes S time-dependent, S(t) ≡ S[U(t)]. Thus
alternatively we can express (1) in the form

Iα(t) =
ie
2π

Nr∑

β=1

S∗
αβ

dSαβ
dt

. (3)

Originally in [2] the potential U(r, t) is the self-consistent Coulomb po-
tential. However the form of (3) tells us that the current Iα(t) can arise in
response to a slow variation of any quantity (parameter) which affects the
scattering properties of a mesoscopic sample. For instance the current gener-
ated by a slowly varying vector potential [4] permits to derive the Landauer
dc-conductance from (3). But (3) is not limited to the linear response regime.
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The current Iα(t) given by (3) is a nonlinear functional of the scattering ma-
trix. Therefore, the mesoscopic system can exhibit an internal rectification
effect, i.e., an oscillating internal potential (or any appropriate oscillating
parameter) can result in a dc current Idc. Since the elements of the scatter-
ing matrix are quantum mechanical amplitudes the dc-current is the result
of a quantum rectification process. This is a quantum pump effect [3–9].
An approach to quantum pumping based on (1) and (3) was put forth by
Brouwer [3].

Since the time derivative enters (3), quantum rectification will work only
under special conditions [3]. Let one or several parameters affecting the scat-
tering properties of a mesoscopic sample change adiabatically and periodically
in time. Then the scattering matrix changes periodically as well. Consider the
point representing the scattering matrix in the space of all scattering matri-
ces. During the completion of one time period this point will move along a
closed line L. Then the dc current Idc,α, which is the current Iα(t) averaged
over the time period T = 2π/ω, can be represented as a contour integral in
the above mentioned abstract space [9]:

Idc,α =
ieω
4π2

∮

L

(
dSS†)

αα
. (4)

The dc current Idc,α, is non-zero if and only if the line L encloses a non-
vanishing area F . The easy way to see this is to consider a two parameter
space with parameters being S and S†. Since S and S† depend on the same
set of parameters, S = S({Xj}), S† = S†({Xj}), j = 1, 2, . . . , Np, (which
includes, for instance, the shape of a sample, the internal potential, the mag-
netic field, the temperature, the pressure, the Fermi energy, etc.) then to
get the cycle with F �= 0 it is necessary to have at least two parameters
X1(t) = X1 cos(ωt+ϕ1) and X2(t) = X2 cos(ωt+ϕ2) varying with the same
frequency ω and with a phase lag ∆ϕ ≡ ϕ1 − ϕ2 �= 0. In particular, if the
oscillating amplitudes are small, i.e., if the scattering matrix changes only a
little across F , then the pumped current is proportional to the square of the
cycle area [3]:

Idc,α =
eω sin(∆ϕ)X1X2

2π

Nr∑

β=1

�
(
∂S∗
αβ

∂X1

∂Sαβ
∂X2

)

X1=0,X2=0

. (5)

The very simple and compact expression (4) allows to find the pumped cur-
rent for a wide range of situations. Illustrative examples can be found in [10].
In the following we will now discuss the pumping process from the point of
view of photon-assisted transport through a mesoscopic system. We will show
how the interlay between photon–assisted transport and quantum mechanical
interference results in a quantum pump effect [11,12].
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2 Quantum Coherent Pumping: A Simple Picture

By nature, the quantum pump effect is a rectification effect. A single pa-
rameter variation only leads to an ac-current. In a two parameter variation
the modulation of the scatterer due to the second parameter rectifies the
ac-currents generated by the first parameter. Rectification is only achieved
if the driven system can scatter electrons in an asymmetric way. Here the
asymmetry means that the probability Tαβ for an electron to pass through
the sample, say, from the lead β to the lead α and the probability Tβα to
transit the scatterer in the reverse direction differ, Tαβ �= Tβα. Then the flux
of electrons entering the scatterer through lead α and the flux of electrons
scattered and leaving the system through the same lead α differ from each
other, resulting in a net electron flow in lead α. The resulting current can
be viewed as a result of an asymmetrical redistribution of incoming flows
between the outgoing leads.

To clarify the physical mechanism which can lead to asymmetric scatter-
ing we now emphasize the essential difference between the driven scatterer
and a stationary one. The key difference is the possibility of photon–assisted
transport. In the stationary case if an electron with energy E enters the phase
coherent system then it leaves the system with the same energy E. In con-
trast, in the driven case while traversing the system an electron can absorb
(or emit) energy quanta n�ω and thus it can leave the system with an energy
En = E + n�ω.

It is important that the electron changes its energy interacting with a
system which is modulated deterministically. As a consequence the inelas-
tic processes is coherent. If there are several possibilities for transmission
through the system absorbing or emitting the same energy (say, n�ω) the
corresponding quantum–mechanical amplitudes will interfere. Such an inter-
ference of photon–assisted amplitudes can lead to directional asymmetry of
electron propagation through a driven mesoscopic sample.

To illustrate this process we consider a simple but generic example. It
is a system consisting of two regions with oscillating potentials V1(t) =
2V cos(ωt+ϕ1) and V2(t) = 2V cos(ωt+ϕ2) separated by the distance L. For
the sake of simplicity we assume that both potentials oscillate with the same
small amplitude 2V . Consider an electron with energy E incident on the sys-
tem. In leading order in the oscillating amplitudes only absorption/emission
of a single energy quantum �ω needs to be taken into account. So, there are
only three scenarios to traverse the system. In the first case, an electron does
not change its energy, the outgoing energy is E(out) = E. In the second case,
it absorbs one energy quantum, E(out) = E + �ω. In the third case, it emits
an energy �ω, E(out) = E−�ω. Since all these processes correspond to differ-
ent final states (which differ in energy E(out) from each other) then the full
probability T to pass through the system is a sum of three contributions:

T = T (0)(E;E) + T (+)(E + �ω;E) + T (−)(E − �ω;E) . (6)
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V1(t) V2(t)

E E

V1(t)

E L

V2(t)

E ± hω

E ± hω E ± hω+

=

Fig. 2. For the process in which a carrier with energy E traverses two oscillat-
ing potentials V1(t) and V2(t), a distance L apart, and absorbs/emits an energy
quantum �ω there are two interfering alternatives. The modulation quantum can
be either absorbed/emitted at the first barrier or at the second one

Here the first argument is an outgoing electron energy while the second ar-
gument is an incoming energy.

The probability T (0), like the tranmission probability of stationary scat-
terer, is insensitive to the propagation direction. In contrast T (+) and T (−)

are directionally sensitive. Therefore we concentrate on the last two.
Let us consider T (+). There are two possibilities to pass through the sys-

tem and to absorb an energy �ω, see, Fig. 2. The first possibility is to absorb
an energy due to the oscillation of V1(t). The second possibility is to absorb
an energy interacting with V2(t). In these two processes an electron has the
same initial state and the same final state. Therefore, we can not distinguish
between these two possibilities and according to quantum mechanics to calcu-
late the corresponding probability we first have to add up the corresponding
amplitudes and only then take the square. Let us denote the amplitude cor-
responding to the propagation through the system with absorbing �ω at Vj

as A(j,+), j = 1, 2. Then the corresponding full probability is:

T (+) =
∣
∣
∣A(1,+) + A(2,+)

∣
∣
∣

2

. (7)

Each amplitude (either A(1,+) or A(2,+)) is a product of two terms, the am-
plitude A(free)(E) = eikL (here k =

√
2mE/� is an electron wave number) of

free propagation in between the potentials and the amplitude A(+)
j describing

the absorption of an energy quantum �ω at the potential Vj. The amplitude
A(+)

j is proportional to the corresponding Fourier coefficient of Vj(t). The pro-

portionality constant is denoted by α. Therefore we have A(+)
j = αVje−iϕj .

The probability for an electron going from the left to the right is denoted
by T (+)

→ . The probability corresponding to the reverse direction – by T (+)
← .

Our aim is to show that
T (+)
→ �= T (+)

← . (8)
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First we consider T (+)
→ . Scattering from the left to the right an electron

first meets the potential V1(t) and only then the potential V2(t). Therefore
if an electron absorbs the energy �ω at the first potential it traverses the
remaining part of the system with enhanced energy E+1 = E + �ω. The
corresponding amplitude is A(1,+)

→ = A(+)
1 A(free)(E+1). While if an electron

absorbed �ω at the second potential then it goes through the system with the
initial energy E. The quantum mechanical amplitude corresponding to such
a process reads: A(2,+)

→ = A(free)(E)A(+)
2 . If the energy quantum is much

smaller then the electron energy, �ω � E, then we can expand the phase
factor corresponding to free propagation with enhanced energy E+1 to first
order in the driving frequency: k+1L ≈

(
k + ω

v

)
L, here v = �k/m is an

electron velocity. Thus we have:

A(1,+)
→ ≈ αV e−iϕ1ei(k+ ω

v )L,

A(2,+)
→ = eikLαV e−iϕ2 .

(9)

Substituting these amplitudes into (7) we obtain the probability to pass
through the system from the left to the right with the absorption of an
energy quantum �ω:

T (+)
→ = 2α2V 2

{

1 + cos
(

ϕ1 − ϕ2 −
ωL

v

)}

. (10)

Now we consider the probability T (+)
← . Going from the right to the left an elec-

tron first meets the potential V2(t) and then the potential V1(t). Therefore,
the corresponding amplitudes are:

A(1,+)
← = eikLαV e−iϕ1 ,

A(2,+)
← ≈ αV e−iϕ2ei(k+ ω

v )L
(11)

Using (7) and (11) we find:

T (+)
← = 2α2V 2

{

1 + cos
(

ϕ1 − ϕ2 +
ωL

v

)}

. (12)

Comparing (10) and (12) we see that the transmission probability depends
on the direction of electron propagation as we announced in (8).

Let us characterize the asymmetry in transmission probability by the
difference ∆T (+) = T (+)

→ − T (+)
← :

∆T (+) = 4α2V 2 sin(∆ϕ) sin
(
ωL

v

)

. (13)

In our simple case the emission leads to the same asymmetry in the photon–
assisted transmission probability: ∆T (−) = ∆T (+). Therefore if there are the



Scattering Theory of Dynamic Electrical Transport 39

same electron flows I0 coming from the left and from the right, then a net
current I = I0

(
∆T (−) + ∆T (+)

)
is generated. We assume a positive current

to be directed to the right.
We see that the induced current I depends separately on ∆ϕ = ϕ1 −

ϕ2 and on the factor ωL/v. This is an additional dynamical phase due to
absorption of an energy quantum �ω. Such a separation of phase factors can
be interpreted in the following way. The presence of the phase lag ∆ϕ (by
modulo 2π) between the oscillating potentials V1(t) and V2(t) breaks the time
reversal invariance of a problem and hence potentially permits the existence
of a steady particle flow. The second term emphasizes a spatial asymmetry
of a model consisting of two inequivalent oscillating regions separated by a
distance L, and tells us that the interference of photon–assisted amplitudes
is the mechanism inducing electron flow. Neither a phase lag nor a photon-
assisted process can separately lead to a dc current.

The simple model presented here reproduces several generic properties of
a periodically driven quantum system. First, a driven spatially asymmetric
system can pump a current between external electron reservoirs to which this
system is coupled. Second, the pumped current is periodic in the phase lag
between the driving parameters. Third, at small driving frequency, ω → 0,
the current generated is linear in ω. In contrast the oscillatory dependence on
ω of (13) is a special property of the simple resonant tunneling structure [13].

3 Beyond the Frozen Scatterer Approximation:
Instantaneous Currents

In experiments the external electrical circuit to which the pump is connected
is important [14, 15]. Consequently, it is of interest to understand the work-
ings of a quantum pump connected to contacts which are not at equilibrium
but support dc-voltages and ac-potentials. We now present a number of re-
sults of a rigorous calculation of dynamically generated currents within the
scattering matrix approach for spinless non-interacting particles [16]. These
results permit the investigation of pumping also in experimentally more re-
alistic non-ideal situations.

We generalize the approach of [2] to the case of strong periodic driving
when many photon processes are of importance. To take them into account
we use the Floquet scattering matrix whose elements SF,αβ(En, E) are the
quantum mechanical amplitudes (times

√
kn/k, where kn =

√
2mEn/�, En =

E+n�ω) for scattering of an electron with energy E from lead β to lead α with
absorption (n > 0) or emission (n < 0) of |n| energy quanta �ω. Like in [2] we
deal with low frequencies (adiabatic driving) and calculate the current linear
in ω. In this limit we can expand the Floquet scattering matrix in powers of
ω.

To zero-th order the Floquet sub-matrices SF(En, E) are merely the ma-
trices of Fourier coefficients Sn of the stationary scattering matrix with time-
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dependent (pump)-parameters, S(t) ≡ S({Xj(t)}). The matrix S(t) is the
frozen scattering matrix, in the sense that it describes the time moment t
and hence stationary scattering. If all the reservoirs are kept at the same
conditions (potential, temperature..) then the knowledge of only the frozen
scattering matrix is sufficient to calculate the current flowing through the
scatterer, see (3). Under more general conditions knowledge of the frozen
scattering matrix is not sufficient. We stress that the frozen scattering matrix
does not describe the scattering of electrons by a time-dependent scatterer:
only the Floquet scattering matrix does. Since we are interesting in a current
linear in ω then, in general, it is necessary to know the Floquet scattering ma-
trix with the same accuracy. Thus we have to go beyond the frozen scattering
matrix approximation and to take into account the corrections of order ω.
As we illustrated in Sect. 2 such corrections are due to interference between
photon–assisted amplitudes.

We use the following ansatz:

SF(En, E) = Sn(E) +
n�ω

2
∂Sn(E)
∂E

+ �ωAn(E) +O(ω2) . (14)

The matrix A(E, t) [with Fourier coefficients An(E)] introduced here is a key
ingredient. As we will see this matrix reflects the asymmetry in scattering
from one lead to the other and back. The unitarity condition for the Floquet
scattering matrix leads to the following equation for the matrix A(E, t):

�ω
(
S†(E, t)A(E, t) + A†(E, t)S(E, t)

)
=

1
2
P{S†;S} , (15)

where P is the Poisson bracket with respect to energy and time

P{S†;S} = i�
(
∂S†

∂t

∂S

∂E
− ∂S†

∂E

∂S

∂t

)

.

The matrix A can not be expressed in terms of the frozen scattering ma-
trix S(t) and it has to be calculated (like S itself) in each particular case.
Nevertheless there are several advantages in using (14).

First, the matrix A has a much smaller number of elements than the
Floquet scattering matrix. The matrix A depends on only one energy, E,
and, therefore, it has Nr ×Nr elements like the stationary scattering matrix
S. In contrast, the Floquet scattering matrix SF depends on two energies, E
and En, and, therefore, it has (2nmax + 1)×Nr ×Nr relevant elements. Here
nmax is the maximum number of energy quanta �ω absorbed/emitted by an
electron interacting with the scatterer which we have to take into account
to correctly describe the scattering process. For small amplitude driving we
have nmax ≈ 1, whereas if the parameters vary with a large amplitude then
nmax � 1.

Second, the Floquet scattering matrix has no definite symmetry with
respect to a magnetic field H reversal. In contrast both the frozen scattering
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matrix S and A have. The analysis of the micro-reversibility of the equations
of motion gives the following symmetry:

S(−H) = ST(H) ,

A(−H) = −AT(H) ,
(16)

where the upper index “T” denotes the transposition. In the absence of a
magnetic field, H = 0, the matrix A is antisymmetric in lead indices, Aαβ =
−Aβα.

Next, using the adiabatic expansion, (14), we calculate the full time-
dependent current Iα(t) flowing in lead α as follows [16]:

Iα(t) =
∞∫

0

dE
∑

β

{

e
h [f0,β − f0,α]

∣
∣Sαβ(E, t)

∣
∣2

− e ∂∂t
[

f0,β
dNαβ(E,t)

dE

]

+ f0,β
dIαβ(E,t)

dE

}

.

(17)

Here f0,α is the Fermi distribution function for electrons in reservoir α. We
assume a current in a lead to be positive if it is directed from the scatterer
to the corresponding reservoir. Equation (17) generalizes (3) to the case with
external reservoirs being nonidentical (e.g., having different chemical poten-
tials, temperatures, etc.). The three parts in the curly brackets on the RHS of
(17) can be interpreted as follows: The first part defines the currents injected
from the external reservoirs. It depends on the time-dependent conductance
Gαβ(t) = e2

h |Sαβ(t)|2 of the frozen scatterer and hence it describes a classical
rectification contribution to the dc current Idc,α. The second part defines the
current generated by the oscillating charge Q(t) of the scatterer:

Q(t) = e
∑

α

∑

β

∞∫

0

dEf0,β
dNαβ(E, t)

dE
. (18)

Here dNαβ/dE is the global partial density of states for a frozen scatterer:

dNαβ
dE

=
i

4π

(
∂S∗
αβ

∂E
Sαβ − S∗

αβ

∂Sαβ
∂E

)

. (19)

Apparently this part gives no contribution to the dc current. The third part
describes the currents generated by the oscillating scatterer. The ability to
generate these ac currents differentiates a non-stationary dynamical scatterer
from a merely frozen scatterer.

The instantaneous spectral currents dIαβ/dE pushed by the oscillating
scatterer from lead β to lead α read:

dIαβ
dE

=
e

h

(

2�ωRe[S∗
αβAαβ ] +

1
2
P{Sαβ ;S∗

αβ}
)

. (20)
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The two terms in this equation have different symmetry properties with re-
spect to the interchange of lead indices. That is most evident in the absence
of a magnetic field, H = 0. In this case the first term on the RHS of (20)
is antisymmetric in lead indices while the second term has the symmetry of
the stationary scattering matrix S and is thus symmetric. Therefore, the ma-
trix A is responsible for the directional asymmetry of dynamically generated
currents:

dIαβ
dE

�= dIβα
dE

. (21)

We remark, that if one calculates the dc current generated in the par-
ticular case when all the reservoirs are at same potentials and temperatures
(f0,α = f0,β , ∀ α, β) then (17) (after averaging over a pump period) generates
Brouwer’s result, (4). In this case the matrix A plays no role. Different contri-
butions of this matrix can be combined as in (15). In contrast, the matrix A
is important in less symmetrical situations, when the electron flows arriving
at the scatterer from different leads are different.

The spectral currents dIαβ/dE are subject to the following conservation
law:

Nr∑

α=1

dIαβ(E, t)
dE

= 0 . (22)

Such a property supports the point of view that these currents arise inside
the scatterer. They are generated by the non-stationary scatterer without any
external current source. The appearance of currents subject to the conserva-
tion law (22) can be easily illustrated within the quasi–particle picture [12].
Let all the reservoirs have the same chemical potential µα = µ, α = 1, . . . , Nr.
We introduce quasi–particles: the quasi–electrons corresponding to filled
states with energy E > µ and holes corresponding to empty states with en-
ergy E < µ. Then at zero temperature there are no incoming quasi–particles.
In other words, from each lead the vacuum of quasi–particles is falling upon
the scatterer. Interacting with the oscillating scatterer, the system of (real)
electrons can gain, say, n energy quanta �ω. In the quasi–particle picture this
process corresponds to the creation of a quasi–electron–hole pair with energy
n�ω. The pair dissolves and the quasi–particles are scattered separately to
the same or different leads, see, Fig. 3. If the scattering matrix depends on
energy then the quasi–electron and hole are scattered, on average, into differ-
ent leads since they have different energies. Suppose the electron leaves the
scattering region through lead α and the hole leaves through lead β. Since
electrons and holes have opposite charge the current pulses created in the
leads α and β have different sign. As a result a current pulse arises between
the α and β reservoirs. In this picture it is evident that there is no incoming
current and the sum of outgoing currents does satisfy the conservation law
(22).
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nhω

Fig. 3. Interacting with an oscillating potential the electron system gains mod-
ulation quanta of energy. Absorption of an energy n�ω leads to the creation of
a non-equilibrium quasi–electron–hole pair. The quasi–electron (black circle) and
hole (open circle) can leave the scattering region through different leads. This leads
to current pulses of different signs in the corresponding leads

Note, from (15) and (20) it is obvious that a conductor with strictly energy
independent scattering matrix does not produce current and thus it does not
show a quantum pump effect.

The current Iα(t), calculated with (17), satisfies the continuity equation:

∑

α

Iα(t) +
∂Q(t)
∂t

= 0 , (23)

and thus conserves charge. To demonstrate this we use the unitarity of the
frozen scattering matrix,

∑

α |Sαβ |2 =
∑

β |Sαβ |2 = 1, and the definition of
the charge Q(t) of the scatterer, see (18).

It follows from (22) that the dynamically generated currents dIαβ/dE
do not contribute to (23). Therefore they have nothing to do with charg-
ing/discharging of a scatterer. The existence of these currents is an intrinsic
property of dynamical scatterer.

In conclusion, we clarified the role played by photon–assisted processes
in adiabatic electron transport through a periodically driven mesoscopic sys-
tem. The interference between the corresponding photon–assisted amplitudes
makes the transmission probability dependent on the electron transmission
direction in striking contrast with stationary scattering. To consider prop-
erly this effect we introduced an adiabatic (in powers of a driving frequency)
expansion of the Floquet scattering matrix and demonstrated that already
linear in ω terms exhibit the required asymmetry.

The ability to generate currents is only one interesting aspect of quan-
tum pumps. Recent works point to the possibility of dynamical controlled
generation of entangled electron-hole states [17, 18]. This brings into focus
the dynamic quantum state of pumps. This and other properties will likely
assure a continuing lively interest in quantum pumping.
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We give a short presentation of two recent results. The first one is a rigorous
proof of the Landauer-Büttiker formula, and the second one concerns resonant
quantum transport. The detailed results are in [2]. In the last section we
present the results of some numerical computations on a model system.

Concerning the literature, then see the starting point of our work, [6].
In [4] a related, but different, problem is studied. See also [5] and the recent
work [1].

1 The Landauer-Büttiker Formula

We start by introducing the notation and the assumptions. The model used
here describes a finite sample coupled to a finite number of leads. The leads
may be finite or semi-infinite. We use a discrete model, i.e. the tight-binding
approximation. The sample is modeled by a finite set Γ ⊂ Z2. Each lead is
modeled by N = {0, 1, . . . , N} ⊆ N. The case N = N (N = +∞) is the
semi-infinite lead. We assume that we have M ≥ 2 leads. The one-particle
Hilbert space is then

H = �2(Γ ) ⊕ �2(N ) ⊕ · · · ⊕ �2(N )
︸ ︷︷ ︸

M copies

. (1)

The Hamiltonian is denoted by H. It is the sum of the following components.
For the sample we can take any selfadjoint operator HS on �2(Γ ). In each
lead we take the discrete Laplacian with Dirichlet boundary conditions. The
leads are numbered by α ∈ {1, 2, . . . ,M}. Thus

HL =
M∑

α=1

HLα , HLα =
∑

nα∈N
tL(|nα〉〈nα + 1| + |nα〉〈nα − 1|) (2)

H.D. Cornean et al.: The Landauer-Büttiker Formula and Resonant Quantum Transport, Lect.
Notes Phys. 690, 45–53 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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Functions in �2(N ) are by convention extended to be zero at −1 and N + 1.
The parameter tL is the hopping integral. The coupling between the leads
and the sample is described by the tunneling Hamiltonian

HT = HLS +HSL, where HLS = τ
M∑

α=1

|0α〉〈Sα| , (3)

and HSL is the adjoint of HLS . Here |0α〉 denotes the first site on lead α,
and |Sα〉 is the contact site on the sample. The parameter τ is the coupling
constant. It is arbitrary in this section, but will be taken small in the next
section. The total one-particle Hamiltonian is then

H = HS +HL +HT on H . (4)

First we consider electronic transport through the system. Initially the
leads are finite, all of length N , with N arbitrary. We work exclusively in
the grand canonical ensemble. Thus our system is in contact with a reservoir
of energy and particles. We study the linear response of a system of non-
interacting Fermions at temperature T and with chemical potential µ. The
system is subjected adiabatically to a perturbation, defined as follows.

Let χη be a smooth switching function, i.e. 0 ≤ χη(t) ≤ 2, χη(t) = eηt for
t ≤ 0, while χη(t) = 1 for t > 1. The time-dependent perturbation is then
given by

V (N, t) = χη(t)
M∑

α=1

VαIα(N) .

Here Iα(N) =
∑N
nα=0 |nα〉〈nα| is the identity on the α-copy of �2(N ). This

perturbation models the adiabatic application of a constant voltage Vα on
lead α, which will generate a charge transfer between the leads via the sample.

We are interested in deriving the current response of the system due to
the perturbation. In the grand canonical ensemble we need to look at the
second quantized operators. We omit the details and state the result. The
current at time t = 0 in lead α is given by

Iα(0) =
M∑

β=1

gαβ(T, µ, η,N)Vβ + O(V 2) . (5)

The gαβ(T, µ, η,N) are the conductance coefficients [3]. It is clear from the
above formula that we work in the linear response regime. Below we are going
to take the limit N → ∞, followed by the limit η → 0. The limits have to be
taken in this order, since the error term is in fact O(V 2/η2).

The next step is to look at the transmittance, which is obtained from
scattering theory, applied to the pair of operators (K,H0), where H0 = HL

(N = +∞ case) and K = H0 + HS + HT . Properly formulated this is
done in the two space scattering framework, see [7]. Since the perturbation



The Landauer-Büttiker Formula and Resonant Quantum Transport 47

HS +HT is of finite rank, and since we have explicitly a diagonalization of
the operator H0, the stationary scattering theory gives an explicit formula for
the scattering matrix, which is an M ×M matrix, depending on the spectral
parameter λ = 2tL cos(k) of H0. The T -operator is then given by an M ×M
matrix tαβ(λ), and the transmittance is given by

Tαβ(λ) = |tαβ(λ)|2 . (6)

It follows from the explicit formulas that Tαβ(λ) is real analytic on (−2tL, 2tL),
and zero outside this interval.

With these preparations we can state the main result.

Theorem 1. Consider α �= β, T > 0, µ ∈ (−2tL, 2tL), and η > 0. Assume
that the point spectrum of K (corresponding to the N = +∞ case) is disjoint
from {−2tL, 2tL}. Then taking first the limit N → ∞, and then η → 0, we
have

gα,β(T, µ) = lim
η→0

[
lim
N→∞

gα,β(T, µ, η,N)
]

= − 1
2π

∫ 2tL

−2tL

∂fF−D(λ)
∂λ

Tαβ(λ)dλ . (7)

Here fF−D(λ) = 1/(e(λ−µ)/T + 1) is the Fermi-Dirac function. If we finally
take the limit T → 0, we obtain the Landauer formula

gα,β(0+, µ) =
1
2π

Tαβ(µ) . (8)

The proof of this main result is quite long and technical. One has to study
the two sides of the equality above. The scattering part (the transmittance)
is quite straightforward, using the Feshbach formula. The conductance part
is a fairly long chain of arguments, as is the proof of the equality statement
in the theorem. We refer to [2] for the details.

2 Resonant Transport in a Quantum Dot

In the previous section we have allowed the coupling constant τ (see (3)) to
be arbitrarily large. The only assumption was that {−2tL, 2tL} was not in
the point spectrum of K. We now look at the small coupling case, τ → 0.
In this case we will assume that the sample Hamiltonian HS does not have
eigenvalues {−2tL, 2tL}. It then follows from a perturbation argument, using
the Feshbach formula, that the same is true for K, provided τ is sufficiently
small.

Since HS is an operator on the finite dimensional space �2(Γ ), is has
a purely discrete spectrum. We enumerate the eigenvalues in the interval
(−2tL, 2tL):
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σ(HS) ∩ (−2tL, 2tL) = {E1, . . . , EJ} .
Let β �= γ be two different leads. The conductance between these two is
now denoted by Tβ,γ(λ, τ), making the dependence on the coupling constant
explicit, see (6).

Theorem 2. Assume that the eigenvalues {E1, . . . , EJ} are nondegenerate,
and denote by φ1, . . . φJ the corresponding normalized eigenfunctions. We
then have the following results:

(i) For every λ ∈ (−2tL, 2tL) \ {E1, . . . , EJ} we have

lim
τ→0

Tβ,γ(λ, τ) = 0 . (9)

(ii)Let λ = Ej. If either 〈Sβ , φj〉 = 0 or 〈Sγ , φj〉 = 0, then

lim
τ→0

Tβ,γ(Ej , τ) = 0 . (10)

(iii)Let λ = Ej. If both 〈Sβ , φj〉 �= 0 and 〈Sγ , φj〉 �= 0, then there exist positive
constants C(Ej), such that

lim
τ→0

Tβ,γ(Ej , τ) = C(Ej)

∣
∣
∣
∣
∣

〈Sβ , φj〉 · 〈Sγ , φj〉
∑M
α=1 |〈Sα, φj〉|2

∣
∣
∣
∣
∣

2

. (11)

This result can be interpreted as follows. Case (i): If the energy of the
incident electron is not close to the eigenvalues of HS , it will not contribute
to the current. Case (ii): If the incident energy is close to some eigenvalue
of HS , but the eigenfunction is not localized along both contact points Sβ
and Sγ , again there is no current. Case (iii): In order to have a peak in the
current it is necessary for HS to have extended edge states, which couple to
several leads.

3 A Numerical Example

We end this contribution with some numerical results on the transport
through a noninteracting quantum dot described by a discrete lattice con-
taining 20 × 20 sites and coupled to two leads connected to two opposite
corners. The magnetic flux is fixed and measured in arbitrary units, while
the lead-dot coupling was set to τ = 0.2. The sample Hamiltonian HS is
given by the Dirichlet restriction to the above mentioned finite domain of

HS(Vg) =
∑

(m,n)∈Z2

(
(E0 + Vg)|m,n〉〈m,n| + t1(e−i

Bm
2 |m,n〉〈m,n+ 1| + h.c.)

+ t2(e−i
Bn
2 |m,n〉〈m+ 1, n| + h.c.)

)
. (12)
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Here h.c. means hermitian conjugate, E0 is the reference energy, B is a mag-
netic field, from which the magnetic phases appear (the symmetric gauge was
used), while t1 and t2 are hopping integrals between nearest neighbor sites.

The constant denoted Vg adds to the on-site energies E0, simulating the
so-called “plunger gate voltage” in terms of which the conductance is mea-
sured in the physical literature. The variation of Vg has the role to “move”
the dot levels across the fixed Fermi level of the system (recall that the
latter is entirely controlled by the semi-infinite leads). Otherwise stated, the
eigenvalues of HS(Vg) equal the ones of HS(Vg = 0) (we denote them by
{Ei}), up to a global shift Vg. Using the Landauer-Büttiker formula (8), and
the formulas (3.8) and (4.6) in [2], it turns out that the computation of the
conductivity between the two leads (or equivalently, of T12) reduces to the
inversion of an effective Hamiltonian.

Moreover, when Vg is fixed such that there exists an eigenvalue Ei of
HS(Vg = 0) obeying Ei + Vg = EF , the transmittance behavior is described
by (11). Thus one expects to see a series of peaks as Vg is varied. Here the
Fermi level was fixed to EF = 0.0 and the hopping constants in the lattice
t1 = 1.01 and t2 = 0.99. We have taken the magnetic flux (which equals B
for the unit lattice) to 0.15. Then the resonances appear, whenever Vg = −Ei
(since the spectrum of our discrete operator HS(0) is a subset of [−4, 4], the
suitable interval for varying Vg is the same).

Before discussing the resonant transport let us analyze the spectrum of
our dot at Vg = 0, in order to emphasize the role of the magnetic field. We re-
call that we used Dirichlet boundary conditions (DBC) and the magnetic field
appears in the Peierls phases of HS (see (12)). In Fig. 1 we plot the first 200
eigenvalues (this suffices since the spectrum is symmetrically located with re-
spect to 0, i.e both Ei and −Ei belong to σ(HS(0))). One notices two things.
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Fig. 1. The dot spectrum
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First, there are two narrow energy intervals ([−3.17,−3.16] and [−1.75, 1.65])
covered by many eigenvalues (∼33 and 45 respectively). Secondly, the much
larger ranges [−3.16,−1.72] and [−1.65,−0.8] contain only 25 and 30 eigen-
values. This particular structure of the spectrum is due to both the magnetic
field and the DBC. The dense regions are reminescences of the Landau levels
of the infinite system while the largely spaced eigenvalues appear between the
Landau levels due to the DBC. As we shall see below their corresponding
eigenfunctions are mostly located on the edge of the sample. As the energy
approaches zero, the distinction between edge and bulk states is not anymore
clear and one can have quite complex topologies for eigenfunctions. We point
out that the “clarity”, the length, and the number of edge states regions
intercalated in the Landau gaps, increase as the sample gets bigger.

Now let us again comment on (11). Here Ei must be replaced by Ei+Vg,
where Ei are eigenvalues of HS(0). Remember that we took µ = 0. The
number of leads is M = 2. By inspecting formula (4.6) in [2], one can show
that the constant C(Ei + Vg) will always equal 4 (we have kµ = π/2 and
tL = 1). Therefore, each time we fulfill the condition Vg = −Ei, we obtain a
peak in the transmittance, which for small τ should be close to

4

∣
∣
∣
∣
∣

〈S1, φj〉 · 〈S2, φj〉
∑2
α=1 |〈Sα, φj〉|2

∣
∣
∣
∣
∣

2

≤ 1 . (13)

We have equality with 1, if and only if |〈S1, φj〉| = |〈S2, φj〉|, and this does
not depend on the magnitude of these quantities. Therefore, even for weakly
coupled, but completely symmetric eigenfunctions, we can expect to have a
strong signal. In fact, in this case the relevant parameter is

min
{
|〈S1, φj〉|
|〈S2, φj〉|

,
|〈S2, φj〉|
|〈S1, φj〉|

}

. (14)

Now let us investigate how the transmittance behaves, when Vg is varied.
Figure 2a shows the peaks corresponding to the first six (negative) eigen-
values of HS(Vg = 0). Their amplitude is very small because the associated
eigenvectors are (exponentially) small at the contact sites, and not completely
symmetric (since t1 �= t2). In fact, a few eigenvectors with more symmetry
do generate some small peaks. The spatial localisation of the second and the
sixth eigenvector is shown in Figs. 2b,c.

The peak aspect changes drastically at lower gate potentials as the Fermi
level encounters levels whose eigenstates have a strong component on the
contact subspace (see Figs. 3b and 3c for the spatial localisation of the 38th
and the 49th eigenstate). The transmittance is close to unity in this regime,
since the parameter in (14) is also nearly one. This is explained by the fact
that t1 and t2 have very close values, and the relative perturbation induced by
the lack of symmetry is much smaller than for the bulk states. One notices
that the width of the peaks increases as Vg is decreased as well as their
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separation. In Figs. 3b,c we have plotted the 38th eigenfunction, which gives
the first peak on the right of Fig. 3a, and the 49th eigenfunction associated
to the peak around Vg = 3.06.
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We will discuss a new type of an isoperimetric problem concerning a Hamil-
tonian with N point interactions in R

d, d = 2, 3, all with the same coupling
constant, placed at vertices of an equilateral polygon PN . We show that the
ground state energy is locally maximized by a regular polygon and conjec-
ture that the maximum is global; on the way we encounter an interesting
geometric inequality. We will also mention some extensions of this problem.

1 Introduction

In my talk at the QMath9 conference I discussed three recent mathematical
results inspired by investigations of quantum waveguides. Two of them are
either already published or will be soon [2, 11] while the third one [6] is still
not at the time when I am writing this text; this is the reason why I have
chosen to devote this proceedings contribution to it. In addition, the problem
is amusing and has various extensions worth to explore.

Relations between geometrical configurations and extremal values of spec-
tral quantities are a trademark topic of mathematical physics. Let me recall
the Faber-Krahn inequality [12, 14] which states that among all regions of a
fixed volume the principal eigenvalue of the Dirichlet Laplacian is minimized
by a ball. What is intriguing in this and similar results, however, is that they
are sensitive to the topology. If you consider nonsimply connected regions
of annular type, for instance, then a rotationally symmetric shape on the
contrary typically maximizes the ground-state energy [8, 13].

The question is what happens if the particle confinement is much weaker
than a hard wall modelled by Dirichlet boundary condition, so that speaking
about topology loses meaning. Since I do not adhere to the Bourbaki philo-
sophy and believe that a good example is vital for any theory, I am going
to discuss a simple model situation in which the confinement is extremely
weak being realized by a loop-shaped “polymer-type” point interaction array
defined as in [1]. It has been demonstrated recently that spectral properties
of such arrays depend substantially on their geometry, in particular, that
curvature leads to an effective attractive interaction [4,10]. In this context it
is natural to ask whether the mentioned result about Dirichlet annuli [8] has

P. Exner: Point Interaction Polygons: An Isoperimetric Problem, Lect. Notes Phys. 690,
55–64 (2006)
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an analogue in the situation when the point interactions are arranged along a
closed curve of a fixed length. We will state below this isoperimetric problem
properly and show that the shape close as possible to the circular one, namely
a regular polygon, is a local maximizer for the principal eigenvalue.

I am unable for the time being to answer the question about the global
uniqueness of this maximizer. What I can do, however, and what I will demon-
strate is its reformulation in terms of a purely geometric problem which you
would expect to be solved in Euclid’s Στoιχειoν, or at least not much later.
Surprisingly, it seems to be open, and it has an appeal which problems ex-
pressible in terms of grammar-school mathematics usually have. At the same
time, the problem has various extensions which are no less interesting.

2 The Local Result in Geometric Terms

Let PN ⊂ R
d, d = 2, 3, be a polygon which we will for the present purpose

identify with an ordered set of its vertices, PN = {y1, . . . , yN}; if the vertex
indices exceed this range they are understood modN . We suppose that PN
is equilateral, |yi+1 − yi| = � for a fixed � > 0 and any i. By P̃N we denote a
regular polygon of the edge length �, which means planar (this is trivial, of
course, if d = 2) with vertices lying on a circle of radius �

(
2 sin π

N

)−1.
We are interested in the operator −∆α,PN

in L2(Rd) with N point inter-
actions in the sense of [1], all of the same coupling α, placed at the vertices
of PN . We suppose that it has a non-empty discrete spectrum,

ε1 ≡ ε1(α,PN ) := inf σ (−∆α,PN
) < 0 ,

which is satisfied for any α ∈ R if d = 2, while in the case d = 3 it is true
below a certain critical value of α – cf. [1, Sect. II.1]. The main result which
I am going to report here can be then stated as follows.

Theorem 1. Under the stated conditions, ε1(α,PN ) is for fixed α and � lo-
cally sharply maximized by a regular polygon, PN = P̃N .

It goes without saying that speaking about uniqueness of the maximizer, we
have always in mind the family of regular polynomials related mutually by
Euclidean transformations of the underlying space R

d.
To prove Theorem 1 we are going to show first that the task can be

reformulated in purely geometric terms. Using k = iκ with κ > 0, we find
the eigenvalues −κ2 solving the following spectral condition,

detΓk = 0 with (Γk)ij := (α− ξk)δij − (1 − δij)gkij ,

where gkij := Gk(yi − yj), or equivalently

gkij =

{ 1
2πK0(κ|yi − yj |) . . . d = 2

e−κ|yi−yj |

4π|yi−yj | . . . d = 3
(1)



Point Interaction Polygons: An Isoperimetric Problem 57

and the regularized Green’s function at the interaction site is

ξk =

{

− 1
2π

(
ln κ2 + γE

)
. . . d = 2

− κ
4π . . . d = 3

The matrix Γiκ has N eigenvalues counting multiplicity which are increasing
in (0,∞) as functions of κ – see [15] and recall that they are real-analytic
and non-constant in view of their known asymptotic behavior [1]. The sought
quantity, ε1(α,PN ), corresponds to the point κ where the lowest of these
eigenvalues vanishes. Consequently, we have to check that

minσ(Γiκ̃1) < minσ(Γ̃iκ̃1) (2)

holds locally for PN �= P̃N , where −κ̃2
1 = ε1(α, P̃N ).

Next we notice that the lowest eigenvalue of Γ̃iκ̃1 corresponds to the eigen-
vector φ̃1 = N−1/2(1, . . . , 1). Indeed, by [1] there is a bijective correspondence
between an eigenfunction c = (c1, . . . , cN ) of Γiκ at the point, where the cor-
responding eigenvalue equals zero, and the corresponding eigenfunction of
−∆α,PN

given by c ↔
∑N
j=1 cjGiκ(· − yj), up to a normalization. Again

by [1], the principal eigenvalue of −∆α,PN
is simple, so it has to be asso-

ciated with a one-dimensional representation of the corresponding discrete
symmetry group of P̃N ; it follows that c1 = · · · = cN . Hence

minσ(Γ̃iκ̃1) = (φ̃1, Γ̃iκ̃1 φ̃1) = α− ξiκ̃1 − 2
N

∑

i<j

g̃iκ̃1
ij . (3)

On the other hand, for the l.h.s. of (2) we have a variational estimate

minσ(Γiκ̃1) ≤ (φ̃1, Γiκ̃1 φ̃1) = α− ξiκ̃1 − 2
N

∑

i<j

giκ̃1
ij ,

and therefore it is certainly sufficient to check that the inequality
∑

i<j

Giκ(yi − yj) >
∑

i<j

Giκ(ỹi − ỹj) (4)

holds for all κ > 0 and PN �= P̃N in the vicinity of the regular polygon P̃N .
For brevity we introduce the symbol �ij for the diagonal length |yi − yj | and
�̃ij := |ỹi − ỹj |. We define the function F : (R+)N(N−3)/2 → R by

F ({�ij}) :=
[N/2]
∑

m=2

∑

|i−j|=m

[

Giκ(�ij) −Giκ(�̃ij)
]

;

notice that m = 1 does not contribute because �i,i+1 = �̃i,i+1 = � by assump-
tion. Our aim is to show that F ({�ij}) > 0 except if {�ij} = {�̃ij}. We use
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the fact that the function Giκ(·) is convex for any fixed κ > 0 and d = 2, 3
as it can be seen from cf. (1); this yields the inequality

F ({�ij}) ≥
[N/2]
∑

m=2

νm



Giκ




1
νm

∑

|i−j|=m
�ij



−Giκ(�̃1,1+m)



 ,

where νn is the number of the appropriate diagonals,

νm :=

{

N . . . m = 1, . . . ,
[
1
2 (N − 1)

]

1
2N . . . m = 1

2N for N even

At the same time, Giκ(·) is monotonously decreasing in (0,∞), so the sought
claim would follow if we demonstrate the inequality

�̃1,m+1 ≥ 1
νn

∑

|i−j|=m
�ij

and show that it is sharp for at least one value of m if PN �= P̃N .
In this way we have reduced the task to verification of a geometric in-

equality. Since it may be of independent interest we will state it more gen-
erally, without dimensional restrictions. Let PN be an equilateral polygon in
R
d, d ≥ 2. Given a fixed integer m = 2, . . . , [12N ] we denote by Dm the sum

of lengths of all m-diagonals, i.e. the diagonals jumping over m vertices.

(Pm) The quantity Dm is, in the set of equilateral polygons PN ⊂ R
d with

a fixed edge length � > 0, uniquely maximized by D̃m referring to the
(family of) regular polygon(s) P̃N .

3 Proof of Theorem 1

We have thus to demonstrate the following claim for d = 2, 3.

Theorem 2. The property (Pm) holds locally for any m = 2, . . . , [12N ].

Proof. Let us look for local maxima of the function

fm : fm(y1, . . . , yN ) =
1
N

N∑

i=1

|yi − yi+m|

under the constraints gi(y1, . . . , yn) = 0, where

gi(y1, . . . , yn) := �− |yi − yi+1| , i = 1, . . . , N .
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There are (N − 2)(d − 1) − 1 independent variables here because 2d − 1
parameters are related to Euclidean transformations and can be fixed. We
put

Km(y1, . . . , yN ) := fm(y1, . . . , yN ) +
N∑

r=1

λrgr(y1, . . . , yn) (5)

and compute the derivatives ∇jKm(y1, . . . , yN ) which are equal to

1
N

{
yj − yj+m
|yj − yj+m|

+
yj − yj−m
|yj − yj−m|

}

− λj
yj − yj+1

�
− λj−1

yj − yj−1

�
.

We want to show that these expressions vanish for a regular polygon. Let us
introduce a parametrization for any planar equilateral polygon. Without loss
of generality we may suppose that it lies in the plane of the first two axes.
The other coordinates are then zero and we neglect them writing

yj = �

(
j−1∑

n=0

cos

(
n∑

i=1

βi − ϕ

)

,

j−1∑

n=0

sin

(
n∑

i=1

βi − ϕ

))

, (6)

where ϕ ∈ R is a free parameter and βi is the “bending angle” at the ith
vertex (modulo 2π); the family of these angles satisfies naturally the condition

N∑

i=1

βi = 2πw (7)

for some w ∈ Z \ {0}. Choosing ϕ̃ = π
N and β̃i = 2πi

N , we get in particular

ỹ±m = �

(

±
m−1∑

n=0

cos
π

N
(2n+ 1),

m−1∑

n=0

sin
π

N
(2n+ 1)

)

.

Then we have

|ỹj−ỹj±m| = �





(
m−1∑

n=0

cos
π

N
(2n+ 1)

)2

+

(
m−1∑

n=0

sin
π

N
(2n+ 1)

)2


 =: �Υm ,

and consequently, ∇jKm(ỹ1, . . . , ỹN ) = 0 holds for j = 1, . . . , N if we choose
all the Lagrange multipliers λr in (5) equal to the expression

λ =
σm
NΥm

with σm :=
∑m−1
n=0 sin π

N (2n+ 1)
sin π

N

=
sin2 πm

N

sin2 π
N

. (8)

The second partial derivatives, ∇k,r∇j,sKm(y1, . . . , yN ), are computed to be
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1
N

{

δkj − δk,j+m
|yj − yj+m|

δrs −
(yj − yj+m)r(yj − yj+m)s(δkj − δk,j+m)

|yj − yj+m|3

+
δkj − δk,j−m
|yj − yj−m|

δrs −
(yj − yj−m)r(yj − yj−m)s(δkj − δk,j−m)

|yj − yj−m|3

+
λ

�

(

δk,j+m + δk,j−m − 2δkj
)

δrs

}

.

This allows us to evaluate the Hessian at the stationary point corresponding
to P̃N . After a long but straightforward calculation we arrive at the expression
∑

k,j,r,s

∇k,r∇j,sKm(ỹ1, . . . , ỹN )ξk,rξj,s (9)

=
1

N�Υm

N∑

j=1

{

|ξj − ξj+m|2 −
(ξj − ξj+m, ỹj − ỹj+m)2

|ỹj − ỹj+m|2
− σm|ξj − ξj+1|2

}

.

We observe that the form depends on vector differences only, in other words,
it is invariant with respect to translations and transforms naturally when the
system is rotated. Furthermore, the sum of the first two terms in the bracket
at the r.h.s. of (9) is non-negative by Schwarz inequality.

Since the second term in non-positive, it will be sufficient to establish
negative definiteness of the “reduced” quadratic form

ξ �→ Sm[ξ] :=
∑

j

{
|ξj − ξj+m|2 − σm|ξj − ξj+1|2

}
(10)

on R
Nd. Moreover, it is enough to consider here the case d = 1 only be-

cause Sm is a sum of its “component” forms. We observe that the matrices
corresponding to the two parts of (10) can be simultaneously diagonalized;
the corresponding eigenfunctions are {

(
sin
cos

)
(µrj)}Nj=1, where µr = 2πr

N and
r = 0, 1, . . . ,m − 1. Taking the corresponding eigenvalues we see that it is
necessary to establish the inequalities

4
(

sin2 πmr

N
− σm sin2 πr

N

)

< 0 (11)

form = 2, . . . , [12N ] and r = 2, . . . ,m−1. We left out here the case r = 1 when
the l.h.s. of (11) vanishes, however, the above explicit form of the eigenfunc-
tions shows that the corresponding ξj − ξj+m are in this case proportional to
ỹj − ỹj+m so the second term at the r.h.s. of (9) is negative unless ξ = 0.

Using the expression (8) for σm we can rewrite the condition (11) in terms
of Chebyshev polynomials of the second kind as

Um−1

(

cos
π

N

)

>
∣
∣
∣Um−1

(

cos
πr

N

)∣
∣
∣ . (12)

One can check this inequality directly, because (12) is equivalent to
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sin
πm

N
sin

πr

N
>
∣
∣
∣sin

π

N
sin

πmr

N

∣
∣
∣ , 2 ≤ r < m ≤

[
N

2

]

.

We have sinx sin(η2/x) ≥ sin η for a fixed η ∈ (0, 1
2π) and 2η2/π ≤ x ≤ 1

2π,
and moreover, this inequality is sharp if x �= η, hence the desired assertion
follows from the inequality sin2 x − sin π

N sin Nx
2

π ≥ 0 valid for x ∈ (0, 1
2π).

This concludes the proof of Theorem 2, and by that also of Theorem 1.

4 About the Global Maximizer

I have said that the question whether the maximizer represented by regu-
lar polygons is global remain open. Using the “geometrization” argument
described above, we see that it is necessary to prove the following claim.

Conjecture 1. The property (Pm) holds globally for any m = 2, . . . , [12N ].

Let us look at the problem in more detail in the particular case of planar
polygons, d = 2. We employ a parametrization analogous to (6): for a fixed i
we identify yi with the origin and set for simplicity ϕ = 0, i.e.

yi+m = �



1 +
m−1∑

n=1

cos
n∑

j=1

βj+i,
m−1∑

n=1

sin
n∑

j=1

βj+i



 ;

in addition to the “winding number” condition (7) we require naturally also
that yi = yi+N , or in other words

1 +
N−1∑

n=1

cos
n∑

j=1

βj+i =
N−1∑

n=1

sin
n∑

j=1

βj+i = 0 (13)

for any i = 1, . . . , N . The mean length of all m-diagonals is easily found,

Mm =
�

N

N∑

i=1








1 +
m−1∑

n=1

cos
n∑

j=1

βj+i





2

+





m−1∑

n=1

sin
n∑

j=1

βj+i





2





1/2

,

or alternatively

Mm =
�

N

N∑

i=1



m+ 2
m−1∑

n=1

n∑

r=1

cos
n∑

j=r

βj+i





1/2

. (14)

This result allows us to prove the claim in the simplest nontrivial case.

Proposition 1. The property (P2) holds globally if d = 2.
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Proof. By (14) the mean length of the 2-diagonals equals

M2 =
√

2�
N

N∑

i=1

(1 + cosβi)1/2 =
2�
N

N∑

i=1

cos
βi
2

;

notice that cos βi

2 > 0 because βi ∈ (−π, π). Using now convexity of the
function u �→ − cos u2 in (−π, π) together with the condition (7) we find

−
N∑

i=1

cos
βi
2

≥ −N cos

(
N∑

i=1

βi
2

)

= −N cos
π

N
,

and therefore M2 ≤ 2� cos πN = M̃2. Moreover, since the said function is
strictly convex, the inequality is sharp unless all the βi’s are the same.

For m ≥ 3 the situation is more complicated and one has to take into
account also the condition (13); for the moment the problem remains open.

5 Some Extensions

The main task which this lecture raises is, of course, to prove Conjecture 1
and by that the global uniqueness of the maximizer. At the same time, the
present problem offers various other extensions. One may ask, for instance,
what will be the maximizer when we replace the equilaterality by a prescribed
ordered N -tuple of polygon lengths {�j} and/or coupling constants {αj}.
In both cases the task becomes more difficult because we loose the ground
state symmetry which yielded the relation (3) and consequently the geometric
reformulation based on the inequality (4). Using a perturbative approach, one
may expect that for small symmetry violation the maximizer will not be far
from P̃N , while in the general case we have no guiding principle.

One can also attempt to extend the result to point interaction family of
point interactions in R

3 placed on a closed surface. In this case, however,
there is no unique counterpart to the equilaterality and one has to decide
first what the “basic cell” of such a polyhedron surface should be.

Another extensions of our isoperimetric problem concern “continuous”
versions of the present situation, i.e. Schrödinger operators with singular
interactions supported by closed curves or surfaces – cf. [5, 9] and references
therein – or with a “transverse” potential well extended along a closed curve.
Let us restrict here to describing the situation in the simplest case when we
have an operators in L2(R2) given formally by the expression

Hα,Γ = −∆− αδ(x− Γ ) , (15)

where α > 0 and Γ is a C2 smooth loop in the plane of a fixed length L > 0
without cusp-shaped self-intersections; for a proper definition of the operator
(15) see [9]. In analogy with Theorem 1 we have the following claim.
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Theorem 3. Within the specified class of curves, ε1(α, Γ ) is for any fixed
α > 0 and L > 0 locally sharply maximized by a circle.

One can also conjecture that the circle is a sharp global maximizer, even
under weaker regularity assumptions.

The proof is based on the generalized Birman-Schwinger principle [3]
which makes it again possible to rewrite the problem in purely geometric
terms – see [7] for details – namely as the task to check the inequality

∫ L

0

|Γ (s+u) − Γ (s)|p ds ≤ L1+p

πp
sinp

πu

L
(16)

for p = 1 and all u ∈ (0, 1
2L] and to show that is sharp unless Γ is a circle.

Moreover, it follows from the convexity of the function x �→ x2 that it is
sufficient to prove the inequality (16) with p = 2 instead.

While we believe that these inequalities hold globally, we have at the mo-
ment a proof only for a particular case when u is small enough; the situation
is similar to that in Proposition 1. To prove the local result, one has to ex-
press Γ through its (signed) curvature γ := Γ̇2Γ̈1 − Γ̇1Γ̈2; up to a Euclidean
transformations we have

Γ (s) =
(∫ s

0

cosβ(s′) ds′,
∫ s

0

sinβ(s′) ds′
)

, (17)

where β(s) :=
∫ s

0
γ(s′) ds′ is the bending angle relative to the tangent at the

chosen initial point, s = 0; to ensure that the curve is closed, the conditions
∫ L

0
cosβ(s′) ds′ =

∫ L

0
sinβ(s′) ds′ = 0 must be satisfied. Then the left-hand

side of the inequality (16) with p = 2 becomes

∫ L

0

[(∫ s+u

s

cosβ(s′) ds′
)2

+
(∫ s+u

s

sinβ(s′) ds′
)2
]

ds := c2Γ (u) ; (18)

the relation (17) is analogous to (6), and similarly for the chord length ex-
pressions. A sequence of integral transformations described in detail in [7]
brings the quantity in question to the form

c2Γ (u) = 2
∫ u

0

dx (u− x)
∫ L

0

dz cos

(∫ z+ 1
2x

z− 1
2x

γ(s) ds

)

. (19)

Gentle deformations of a circle can be characterized by the curvature γ(s) =
2π
L +g(s), where g is continuous and small in the sense that ‖g‖∞ � L−1 and
satisfies the condition

∫ L

0
g(s) ds = 0. Expanding in powers of g and using

the last named condition, we find

c2Γ (u) =
L3

π2
sin2 πu

L
− Ig(u) + O(g3) ,
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where the error term is a shorthand for O(‖Lg‖3
∞). One has to show that

Ig(u) > 0 unless g = 0 identically which is trivial for u ≤ 1
4L while for

u ∈ ( 1
4L,

1
2L] one can employ expansion of g into a Fourier series – cf. [7].

Naturally, a further extension of the present problem concerns a maxi-
mizer for the generalized Schrödinger operator in R

3 with an attractive δ
interaction supported by a closed surface of a fixed area A, and its gener-
alization to closed hypersurfaces of codimension one in R

d, d > 3. In the
case of d = 3 we have again a heuristic argument relying on [5,8] which sug-
gests that the problem is solved by the sphere provided the discrete spectrum
is not empty, of course, which is a nontrivial assumption in this case. The
Birman-Schwinger reduction of the problem can be performed again leading
to to new modifications of the geometric inequalities discussed above.
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1 Introduction

This lecture concerns limit cycles in renormalization group (RG) behavior of
quantum Hamiltonians. Cyclic behavior is perhaps more common in quantum
mechanics than the fixed-point behavior which is well-known from critical
phenomena in classical statistical mechanics. We discuss a simple Hamil-
tonian model that exhibits limit cycle behavior.

The value of the model is its simplicity. The model can serve as a basis for
further mathematical studies of the cycle for the purpose of solving complex
physical theories. For example, the limit cycle may be related to existence
of a set of bound states with binding energies forming a geometric sequence
converging to zero. The model offers a possibility of studying in detail how
Hamiltonians with bound states behave as operators under the RG transfor-
mation in the vicinity of the cycle. This lecture reports on results concerning
behavior of marginal and irrelevant operators in the model.

The possibility of limit cycle behavior in RG calculations was originally
pointed out by Wilson [1] in the context of theory of strong interactions in
particle physics. The classification of operators near a fixed point as relevant,
marginal, and irrelevant, was introduced by Wegner [2] in the context of
critical phenomena and corrections to scaling in condensed matter physics.

Recent interest in the RG limit cycle stems from the structure of three-
nucleon bound-state spectrum in the case of two-body nucleon-nucleon inter-
actions that have a very short range in comparison to the scattering length.
This structure was first noticed by Thomas [3] and subsequently discussed
by Efimov [4]. It was only recently associated with ultraviolet regularization
dependence of parameters in the nuclear potentials by Bedaque, Hammer,
and van Kolck [5]. Interactions of atoms, especially in Helium trimers, may
exhibit a similar cycle structure even more transparently than effective nu-
clear forces because more bound states may exist for atoms than for nuclei.
In addition, atomic interactions are easier to tune close to the cycle structure
by changing experimental conditions than nuclear forces. The cyclic few-
body atomic interactions also contribute to many-body dynamics. Braaten,
Hammer, and Kusunoki discussed some effects in a Bose-Einstein conden-
sate [6]. LeClair, Roman, and Sierra discussed a theoretical possibility of
variation in the superconductivity mechanism [7]. On the other hand, the

S.D. G�lazek: Limit Cycles in Quantum Mechanics, Lect. Notes Phys. 690, 65–78 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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range of phenomena that may exhibit cycle structure extends also to sub-
nuclear domain. Namely, Braaten and Hammer observed that masses of the
up and down quarks appear to be close to special values at which an in-
frared cyclic behavior may develop in quantum chromodynamics [8]. From
a mathematical point of view, it is also interesting that the cyclic behav-
ior occurs in the elementary case of two-body quantum mechanics with the
well-known potential r−2, as recently described by Braaten and Phillips [9].
Readers interested in the literature that discusses quantum mechanics with
short-range interactions without direct reference to the RG limit cycle can
consult a review article by Nielsen, Fedorov, Jensen and Garrido [10]. Braaten
and Hammer recently wrote a review article on universal cyclic properties of
physical systems with two-body short range potentials and large scattering
length in the context of renormalization of the potentials [11]. See also [12].

It should be mentioned that examples of renormalization group maps,
which have critical attractors that are not simple fixed points, have been
reported in the literature concerning classical dynamical systems. The au-
thor has learned about existence of a number of works during the process of
preparation of this report [13–20].

The model Hamiltonian reviewed here has been discovered in our RG
studies of Hamiltonians that were focused on hadronic parton dynamics in
the infinite momentum frame [21]. We have recognized that the model has a
RG cycle in a later article [22, 23]. We have subsequently found an analytic
solution for the RG behavior of Hamiltonians in the vicinity of the cycle in
the model and this enabled us to discuss the RG universality of quantum
Hamiltonians with a limit cycle using the model [24]. The purpose of my talk
is to describe the cycle in our model, discuss corrections due to irrelevant
operators, and show tuning to criticality, which allows the cycle spectrum
to clearly appear even in approximations in which the basis of the space of
quantum states is limited to about 70. This is attractive because one can
inspect what happens in the model using a computer. A machine can pro-
vide numerical facts that help in developing intuition which otherwise is not
available. I also address issues that are not fully understood and invite more
research on mathematics of the RG limit cycle in quantum mechanics. Since
atomic interactions can be strongly influenced by varying external fields (e.g.,
see the recent work of Roberts, Claussen, Cornish, and Wieman on magnetic
field dependence of ultracold inelastic atomic collisions [25]), better under-
standing of quantum Hamiltonians near a RG limit cycle is a prerequisite
to systematic experimental searches for cycles in real systems. The distinct
feature to look for is the geometric sequence of bound states converging at
threshold.
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2 Definition of the Model

Our model can be defined in more than one way. Let us consider a non-
relativistic one-particle Hamiltonian in 2 dimensions in the presence of a
point-like potential

H =
−∆r
2µ

− gδ2(r ) , (1)

and write its eigen-functions in momentum space as

φ(p ) =
∫

d2r

(2π)2
e−ip r ψ(r ) . (2)

The momentum-space eigenvalue equation reads

p 2

2µ
φ(p ) − g

(2π)2

∫

d2q φ(q ) = E φ(p ) . (3)

φ can be composed of angular momentum eigen-functions eimϕ with coeffi-
cients φm that depend on p = |p |,

φ(p ) =
∞∑

m=−∞
eimϕ φm(p ) , (4)

and it turns out that wave functions with m �= 0 are the same as in the case
with no interaction. The wave function with m = 0 satisfies the equation

p2

2µ
φ 0(p ) − g

2π

∫ ∞

0

dq q φ 0(q ) = E φ 0(p ) . (5)

Further discussion concerns only the component with m = 0. Using notation

p2 → z , φ 0(p ) → φ(z) , µ→ 1
2
,

g

4π
→ g , (6)

one obtains the eigen-value equation of the form

z φ(z) − g

∫ ∞

0

dz′ φ(z′) = E φ(z) . (7)

If there is a bound state with E = −EB and EB > 0, the solution takes the
well-known shape for factorizable interactions: φ(z) = c/(z − E) with some
constant c, and the eigenvalue condition for EB is

1 = g

∫ ∞

0

dz

z + EB
, (8)

which would be fine if not the fact that the integral diverges. This divergence
and a cure for it are well known [26–34]. The resulting eigenvalue equations
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are studied in mathematical physics [35, 36]. The essence of the cure is to
regulate the integral somehow and make the coupling constant g depend on
the regularization in such a way that the result for EB does not depend on
the regularization when it is being removed. Then, other observables become
also independent of the regularization when it is being removed and instead
they depend on EB . I will focus on a RG calculation for Hamiltonians in
Wilson’s sense of the word [37, 38] and this point of view will be applied in
discussion of the limit cycle.

The point is that every interval 2n−1 ≤ z ≤ 2n contributes the same
amount

∫ 2n

2n−1 dz z
−1 = ln 2 to the complete integral and there are infinitely

many such intervals to add. The coupling constant g must be inversely pro-
portional to the number of such intervals included in the integration. Since
each of the intervals contributes the same amount, we can consider every in-
terval as a single degree of freedom. The essence of regularization is to limit
the number of degrees of freedom. The problem with the divergence is that all
these degrees of freedom are coupled with equal strength and the correlation
length among an infinite number of degrees of freedom on the energy scale is
infinite.

In order to deal with the large number of degrees of freedom it is enough
to consider a discrete model in which the continuous variable z is replaced
by a set of values zn = bn with some b > 1 (b replaces the number 2 in the
integration interval discussed above). Instead of φ(z) we have φ(zn) = φn,
and dz = zndn ln b. The regularization replaces the integral

∫∞
0

by
∫ Λ

ε
. In

the discrete version, we have ε = bM with M large negative and Λ = bN

with N large positive. The integral is replaced by a sum
∑N
n=M since dn =

1. The dependence of g on Λ means that in the discrete model we expect g to
depend on N (dependence on ε or M does not require a separate RG study
in the model). We denote g ln b with appropriate factors including π by gN .
Finally, we obtain a Hamiltonian matrix of the form

Hkl =







bN 0 ... 0
0 bN−1 ... 0
. . ... 0
0 0 ... bM







kl

− b
k+l
2 gN







1 1 ... 1
1 1 ... 1
. . ... 1
1 1 ... 1







kl

, (9)

that acts on the state vectors with components χl = bl/2φl.
Our model with a limit cycle is defined by the replacement

gN







1 1 ... 1
1 1 ... 1
. . ... 1
1 1 ... 1







→ gN







1 1 ... 1
1 1 ... 1
. . ... 1
1 1 ... 1







+ ihN







0 1 ... 1
−1 0 ... 1
. . ... 1

−1 −1 ... 0






. (10)

This means that we complement a real symmetric interaction matrix that re-
quires renormalization due to the large number of equal entries with an imag-
inary skew-symmetric matrix of similarly equal entries. Such imaginary part
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is allowed in quantum mechanics. It turns out that the ultraviolet-diverging
Hamiltonian structure with non-zero imaginary part leads to a limit cycle,
or even more chaotic RG behavior [22].

3 Renormalization Group

Our model Hamiltonian matrix is

Hkl(N, gN , hN ) = b
k+l
2 ( δkl − gN − ihNskl) , (11)

where skl = 1 for k > l and slk = −skl. In order to introduce the RG procedure
let us first set hN = 0. Then, the eigenvalue equation for the matrix Hkl can
be rewritten, introducing ψk = bk/2χk, εk = Eb−k, and σN =

∑N
l=M ψl, as

the following set of equations:

(1 − εN )ψN = gN σN ,

(1 − εN−1)ψN−1 = gN σN ,

: (12)
(1 − εM )ψM = gNσN .

The first equation allows us to express ψN by all other components with m
smaller than N ,

ψN =
gN

1 − εN − gN
σN−1 , (13)

and this value of ψN can be inserted into the remaining equations

(1 − εN−1)ψN−1 = gN σN−1 + gNψN

= gN

[

1 +
gN

1 − εN − gN

]

σN−1

(1 − εN−2)ψN−2 = gN

[

1 +
gN

1 − εN − gN

]

σN−1

: (14)

(1 − εM )ψM = gN

[

1 +
gN

1 − εN − gN

]

σN−1 .

This set can be written as

(1 − εN−1)ψN−1 = gN−1 σN−1 ,

(1 − εN−2)ψN−2 = gN−1 σN−1 ,

: (15)
(1 − εM )ψM = gN−1 σN−1 ,
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when one defines

gN−1 = gN

[

1 +
gN

1 − εN − gN

]

. (16)

Thus, the Hamiltonian matrix of (11) is turned into a new matrix, smaller
by one row and one column of highest energy bN , k, l ≤ N − 1,

Hkl(N − 1, gN−1) = b
k+l
2 ( δkl − gN−1) . (17)

The new ultraviolet cutoff is ΛN−1 = bN−1 = Λ/b, and there is a new coupling
constant gN−1. This process can be repeated and one obtains a recursion

gn−1 = gn +
g2
n

1 − gn − εn
. (18)

Since no other change occurs in the Hamiltonian matrix, (18) fully describes
the RG transformation for Hamiltonians in our model.

Suppose that we consider n such that the eigenvalue E can be neglected
in comparison to bn. Then the RG transformation simplifies to

gn−1 =
gn

1 − gn
. (19)

If we denote gn−1 = RG(gn), then RG(f) = f/(1 − f). This recursion has
a solution fn = 1/(n+ c) with arbitrary constant c, which means that gn =
1/(c + lnΛn/ ln b) and the larger is the cutoff Λn, the smaller is gn. This
phenomenon is called asymptotic freedom [39, 40]. It is associated with the
fixed point, f∗, of the RG transformation, RG(f∗) = f∗, which is f∗ = 0.
When one reverses the RG transformation to calculate gN for increasing N
in terms of gn0 for some finite n0, gN approaches 0 for asymptotically large
N . The coupling constant gN vanishes as an inverse of a logarithm of the
ultraviolet cutoff Λ.

Let us now speculate a bit about what may happen when the eigenvalue
E is not neglected in the recursion. The RG transformation becomes related
to the spectrum of the Hamiltonian. In our discrete model, after repeating
the transformation N − M times, which can be a very large number, one
obtains one last equation

1 − gM (E) − E/bM = 0 , (20)

which must be satisfied if E is to be an eigenvalue. But instead of a recursion
for a sequence of coupling constants, there appears now a recursion for a se-
quence of functions gn(E) = fn(εn) in our model. The recursion is fn−1(bx) =
RG[fn(x)] with RG[f(x)] = (1 − x)f(x)/[1 − x− f(x)].

If the repeated application of the RG transformation carried every starting
function fN (x) over to a fixed-point function f∗(x) after many iterations, very
many eigenvalues would be given by one equation
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1 − f∗(εM ) − εM = 0 , (21)

provided that εM is sufficiently large not to produce results sensitive to the
infrared cutoffM . The fixed-point function in our model with hN = 0 satisfies
the equation f∗(bx) = (1 − x)f∗(x)/[1 − x− f∗(x)], which has a solution

f∗(x) =
[

. . . +
1

1 − b2x
+

1
1 − bx

+
1

1 − x
+ y

]−1

, (22)

with arbitrary number y (y is determined by one eigenvalue). Most of the
spectrum is determined not by the initial function fN (x) but by the fixed-
point function f∗(x) with some y. The largest eigenvalues may be sensitive to
the initial function in the Hamiltonian with ultraviolet cutoffN , which can be
just a constant. The lowest eigenvalues are sensitive to the infrared cutoff M
because the series that extends to M = −∞ in the fixed-point solution is cut
off in a model with a finiteM . But a large number of eigenvalues is determined
by the behavior of f∗(x) as function of x in the region between bM−N and
1. This behavior depends on the properties of the RG transformation rather
than on the details of the initial Hamiltonian. Thus, all Hamiltonians that
lead to essentially the same RG recursion produce a universal answer for the
spectrum.

One can also ask if the initial Hamiltonian may be tuned so that a small
number of initial iterations of the RG transformation brings the Hamiltonian
right to the vicinity of the fixed-point structure so that further iterations have
universal properties. In such case, the spectrum may more clearly exhibit the
universal structure in a larger subset of eigenvalues than in the case where
the initial Hamiltonian is far away from the criticality that allows the RG
transformation to quickly reach the vicinity of the fixed-point. Since the fixed-
point is not changed by the RG transformation, it corresponds to a theory
with an infinite cutoff. A theory with finite cutoffs must be tuned to yield
the fixed-point structure.

We can now proceed to our model with the limit cycle where such univer-
sality scenario exists in an explicit form and produces a geometric sequence
of bound states [24]. The sequence is related to the fact that there is not just
one fixed point, but a whole cycle of them.

4 Limit Cycle

We now consider the Hamiltonian matrix in (11) with hN �= 0. By eliminating
component after component as in the previous section, we arrive at the RG
transformation that transforms a Hamiltonian matrix

Hkl(n, gn, hn) = b
k+l
2 ( δkl − gn − ihnskl) , (23)

into the one with one row and one column less and [24]
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gn−1 = gn +
g2
n + h2

n

1 − gn − εn
, (24)

hn−1 = hn ≡ hN = h . (25)

The eigenvalue condition at the end of iteration takes the form of (20). The
exact RG recursion can be re-written as

αn−1 = αn + βn , (26)

when one introduces angles

αn = arctan
gn
h
, (27)

βn = arctan
h

1 − εn
. (28)

When the eigenvalue E is set to 0 (there may exist such eigenvalue), we
have βn = arctanh ≡ β, and the successive coupling constants are given by
the formula

gn−p = h tan (αn + p β) , (29)

which implies that gn−p = gn when β = π/p̃ with integer p̃ ≥ 3 and p = p̃.
The coupling constant goes through a cycle and returns to the same value
because the function tan is periodic with period π. If p̃ were irrational, one
would obtain a chaotic RG behavior [22].

Note that for E = 0 we have gn−p = gn regardless of the value of gn.
Therefore, one can seek a simplified RG relationship between gn−p and gn
for E near 0. For this purpose, we introduce functions fn(εn) = gn(εn)/h and
calculate the RG transformation for p successive steps of elimination of rows
and columns one after another. This way we obtain

fn−p(rx) = Rp [fn(x)] , (30)

where x = εn, εn−p = r εn, and r = bp. There are p − 1 different intermedi-
ate functions in this recursion but we focus on the transformation over the
entire cycle because it has a fixed point and we can take advantage of the
universality that develops around fixed points.

The transformation Rp takes the form

fn−p (xn−p ) =
fn(xn) + zp (xn)

1 − fn(xn) zp (xn)
, (31)

where the function zp (0) = 0. For example, when p = 3,

z3(x)/h =
(7/4)x(1 − x)

1 + x3 − (7/4)x(1 + x)
(32)

=
7
4
x+

21
16
x2 +

343
64

x3 +O(x4) . (33)
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The transformation Rp for p = 3 will be discussed in a later section of this
lecture. A complete analysis for arbitrary integer p ≥ 3 and to all orders of
expansion in powers of x is given in the literature [24].

5 Marginal and Irrelevant Operators

Let us consider first two terms in the function

f(x) = f0 + f1 x +O(x2) , (34)

and find the fixed-point values of the coefficients f0 and f1. The fixed point
condition is

f∗(x) = Rp[f∗] = f∗(x/r) + (1 + f∗ 2
0 ) z(1)

p x/r , (35)

and the solution is given by f∗0 = g∗/h and f∗1 =
(
1 + f∗ 2

0

)
z
(1)
p /(r− 1). z(1)

p

denotes the first term in the Taylor expansion of zp(x) in powers of x. Now
we can write the function f(x) as a fixed-point function plus an infinitesimal
correction,

f(x) = f∗(g∗, x) + df(g∗, x) , (36)

and find the RG evolution of the corrections df(g∗, x) by inspecting the trans-
formation

Rp[f∗ + df ] = f∗(x/r) + df(x/r) + [1 + f∗ 2
0 + 2f∗0 df0] z

(1)
p x/r , (37)

in the linearized approximation, Lp(df) = w df(x), where Lp denotes the
derivative of Rp at the fixed point and w is the Wegner eigenvalue [2]. This
way we find that in df(x) = c0 + c1 x the numbers c0 and c1 must simulta-
neously satisfy equations

c0 = w c0 (38)
1
r
c1 + 2z(1)

p f∗0
1
r
c0 = w c1 . (39)

The two solutions for the eigenvalues are w0 = 1 and w1 = r−1 = 1/bp < 1.
The marginal operator corresponds to the eigenvalue 1 (it does not change

under the RG transformation). In this case c0 is arbitrary and c1 is determined
by c0. All coefficients in the expansion of the marginal operator in powers
of x are determined by c0 through the eigenvalue condition [24]. The critical
exponent for the marginal Wegner operator, defined by the scaling relation
w0 = rλ0 , is λ0 = 0.

The first irrelevant operator has c0 equal to zero and c1 arbitrary. All
coefficients in the first irrelevant operator are determined by c1 in it through
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the eigenvalue condition. The critical exponent for the first irrelevant Wegner
operator, defined by the relation w1 = rλ1 , is λ1 = −1.

The linearized RG transformation allows us to find all Wegner’s eigen-
operators using condition

df(x, g∗) + zp(x)[df(x, g∗)f(rx, g∗) + f(x, g∗)wdf(rx, g∗)] = wdf(rx, g∗) ,
(40)

and we find that the operators df whose Taylor expansion starts with terms
∼xl are irrelevant with eigenvalues wl = r−l. This analysis allows us to
understand how one should choose the initial Hamiltonian in order to bring
it close to criticality.

6 Tuning to a Cycle

We want to make sure that the initial H transforms under the first few
RG transformations to such a matrix that the marginal operator takes some
convenient value in a cycle and the first few irrelevant operators vanish. The
latter condition can be realized by eliminating the first few terms in the
Taylor expansion in powers of x.

We consider tuning of our model Hamiltonian to a limit cycle using ex-
ample with p = 3, b = 2, N = 17, and M = −51. In a physical system in
which external conditions define the range of available options for tuning the
system to a cycle, one has to proceed by analogy and identify the key factors
that can expose the cycle within a limited window of energy scales available
experimentally.

The idea we use here in the mathematical model is to modify only the four
upper-left (high-energy) entries in the matrices Hkl in (9) and (10) according
to the rule

Hkl →







tbN 0 0 .
0 tbN−1 0 .
0 0 bN−2 .
. . . .







kl

− b
k+l
2







0 t+ iv g + ih .
t− iv 0 g + ih .
g − ih g − ih g .
. . . .







kl

. (41)

We are lucky doing this, because for v =
√

3 and t = 20/3 the non-linear
exact RG transformation produces in two iterations

gN−2(x) = −7 + 13x − 65
3
x2 + o(x3) . (42)

This is precisely the first three terms in the marginal operator solution from
the previous section. In our example, here we have x = E/215. The first two
irrelevant operators with eigenvalues w1 = 1/8 and w2 = 1/64 are absent.
Corrections to the limit cycle spectrum die out at the rate given by the third
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irrelevant operator with eigenvalue w3 = 1/512. This is illustrated for bound
state eigenvalues in Table 1 (they are found with help of a simple numerical
routine). Note that in order to get rid of the infrared cutoff M we had to
extend the matrix to M = −60 to see precisely how the eigenvalue 1/512
appears in the cyclic spectrum.

Table 1. The bound-state spectrum of a quantum Hamiltonian with a cycle tuned
to criticality in marginal and first two irrelevant operators. The ratio of successive
corrections to the cycle period 23 = 8 for bound-state energies approaches the
inverse of Wegner’s eigenvalue for third irrelevant operator with critical exponent
−3, 1/8−3 = 512, and the entry ∼400 turns to 511.6 when the infrared cutoff
M = −51 is changed to M = −60. Without tuning, the first irrelevant operator
with critical exponent −1 and eigenvalue 8−1 would slow down the approach to the
cycle 64 times

E Ratio w−1
3

−111890.939577163000 8.223556605927 119
−13606.149375382800 8.001879953885 433
−1700.369094987040 8.000004341325 502
−212.546021531960 8.000000008649 511
−26.568252662770 8.000000000017 ∼ 400
−3.321031582839

7 Generic Properties of Limit Cycles

In this section we indicate which features of the model cycle are generic and
will occur in other cases and which are specific and cannot be guaranteed to
occur elsewhere. See [24] for details.

We cannot guarantee that bound states must appear. But we can say that
if bound states do appear, they must form a geometric series converging on
zero. Hamiltonians in the cycle vary but critical exponents do not vary on the
cycle. This is a generic feature that should be helpful in tuning. A marginal
operator is guaranteed in continuum, because the operator that changes the
Hamiltonian in the direction of the cycle will be a derivative with respect to
a continuous parameter that labels the cycle, as the coupling constant g∗ did
in the discrete model. But since tuning depends on non-linear mappings from
HΛ to coefficients in Wegner’s operators, there is no guarantee that one will
be able to eliminate any given set of Wegner’s operators.

The generic properties of cyclic behavior can be studied in the model
without extensive effort required in realistic cases. These properties can be
searched for in real physical systems using exact analytic insight into the
cycle structure that the model provides.
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8 Conclusion

Perhaps the most important question regarding the model that has no answer
so far is the question about the scattering states in the continuum limit, when
b tends to 1. Another question concerns the ratios of positive eigenvalues. For
example, for p = 3 and b = 2, the successive positive eigenvalues appear with
ratio En/En−1 very close to

√
8, but not exactly. It is not clear to the author

what this ratio should be as function of b and p beyond the suggestion that
it should be b

p
p−1 . Precise conditions required for existence of bound states

in a cyclic Hamiltonian spectrum are not known.
The existence of limit cycles in quantum mechanics has a philosophi-

cal consequence: in search for an ultimate theory we always have to keep in
mind that the “ultimate” may mean not a fixed-point structure with parame-
ters reaching their ultimate values but that we may rather wonder endlessly
through a sequence of patterns. This comment is particularly interesting in
the context of asymptotic freedom as an example of ultimate understanding
of microscopic phenomena. The cyclic model shows that asymptotic free-
dom may be merely an intermediate part of a larger cycle. Besides, since
we know that real symmetric Hamiltonians are of measure 0 in the space
of complex Hermitean Hamiltonians, one may immediately suggest that the
cyclic or even chaotic RG behavior of quantum Hamiltonians is more common
than the fixed-point behavior known in classical theories. Hopefully, the con-
crete example of such surprising mathematical transparency, combined with
a considerable scope of possible interpretations and applications by analogy
in various branches of physics, will inspire further interest and the unknowns
of the model will be resolved.
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Cantor Spectrum for Quasi-Periodic
Schrödinger Operators

Joaquim Puig

Departament de Matemàtica Aplicada I. Universitat Politècnica de Catalunya
Av. Diagonal 647, 08028 Barcelona, Spain.

Abstract. We present some results concerning the Cantor structure of the spec-
trum of quasi-periodic Schrödinger operators. These are obtained studying the dy-
namics of the corresponding eigenvalue equations, specially the notion of reducibil-
ity and Floquet theory. We will deal with the Almost Mathieu case, and the solution
of the “Ten Martini Problem” for Diophantine frequencies, as well as other models.1

In recent years there has been substantial progress in the understanding
of the structure of the spectrum of Schrödinger operators with quasi-periodic
potential. Here we will concentrate on one-dimensional, real analytic quasi-
periodic potentials with one or more Diophantine frequencies.

We will begin with the best studied of such operators: the Almost Math-
ieu operator and the solution of the “Ten Martini Problem” which asks for
the Cantor structure of its spectrum. Secondly we will see how this Cantor
structure is generic in the set of quasi-periodic real analytic potentials. We
will end introducing a different approach to this problem which is helpful to
study the phenomenon of “gap opening”.

1 The Almost Mathieu Operator
& the Ten Martini Problem

The Almost Mathieu operator is probably the best studied model among
quasi-periodic Schrödinger operators. It is the following second-order differ-
ence operator:

(HAMb,ω,φx)n = xn+1 + xn−1 + b cos(2πωn+ φ)xn, n ∈ Z , (1)

where b is a real parameter (a coupling parameter, since for b = 0 the operator
is trivial), ω is the frequency, which we assume to be an irrational number (in
most of what follows, also Diophantine) and φ ∈ T = R/(2πZ) will be called
the phase.

1 This work was done while the author was at the Departament de Matemàtica
Aplicada i Anàlisi of the Universitat de Barcelona. It has been supported by grants
DGICYT BFM2003-09504-C02-01 (Spain) and CIRIT 2001 SGR-70 (Catalonia).
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Considered as an operator on l2(Z), the Almost Mathieu operator is
bounded and self-adjoint. The reason for its name comes from the fact that
its eigenvalue equation, namely

xn+1 + xn−1 + b cos(2πωn+ φ)xn = axn, n ∈ Z ,

(sometimes called Harper’s equation), is a discretization of the classical Ma-
thieu equation,

x′′ + (a+ b cos(t))x = 0 .

which is a second-order periodic differential equation (see Ince [9]). The analo-
gies between the Harper equation and Mathieu equation are quite striking
and their comparison illustrates the differences between periodic and quasi-
periodic Schrödinger operators.

1.1 The ids and the Spectrum

The Integrated Density of States (ids) is a very convenient object for the
description of the spectrum of quasi-periodic Schrödinger operators which
can be extended to more general operators. Here we introduce it in the case
of the Almost Mathieu operator for the sake of concreteness.

Fix some b ∈ R and φ ∈ T. For any L ∈ N we define HAM,Lb,ω,φ as the
restriction of the Almost Mathieu operator to the interval {1, . . . , L − 1}
with zero boundary conditions at 0 and L. Let

kAM,Lb,ω,φ (a) =
1

(L− 2)
#
{

eigenvalues of HAM,Lb,ω,φ ≤ a
}

.

Then Avron & Simon [2] prove that

lim
L→∞

kAM,Lb,ω,φ (a) = kAMb,ω (a) ,

which is called integrated density of states, ids for short. This limit is in-
dependent of the value of φ and it is a continuously increasing function
of a.

The ids can be used to describe the spectrum of quasi-periodic Schrödinger
operators in a very nice way. Indeed, the spectrum of HAMb,ω,φ is precisely the
set of points of increase of the map

a �→ kAMb,ω (a)

so that the intervals of constancy belong to the resolvent set of the operator
(and are called the spectral gaps). In particular, this characterization shows
that the spectrum of the Almost Mathieu operator (and in general any quasi-
periodic Schrödinger operator with irrational frequencies) does not depend
on φ. Therefore, we write

σAMb,ω = Spec
(
HAMb,ω,φ

)
.
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Remark 1. The ids for one-dimensional quasi-periodic Schrödinger operators
has many other characterizations. It can be linked to the rotation number of
the corresponding eigenvalue equation. This object was introduced by John-
son & Moser [12] in the continuous case (see Delyon & Souillard [7] for the
adaption to the discrete case and Johnson [11] for a review on these different
characterizations).

The ids can also be used to “label” the spectral gaps of the Almost
Mathieu operator. This is the contents of the Gap Labelling Theorem, by
Johnson & Moser [12]: if I is a spectral gap (an interval of constancy of the
ids) then there is an integer n ∈ Z such that

kAMb,ω (a) = nω, (modulus Z)

for all a ∈ I. Figure 1 displays the gap labelling for the Almost Mathieu
operator at “critical coupling” b = 2.
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Fig. 1. Schematic view of Gap Labelling for HAM
2,ω,φ and b = 2. The ids is plot as

a function of a. Integers in the vertical direction correspond to values n such that
the ids equals nω modulus Z

The Gap Labelling Theorem motivates the following definitions. For any
n ∈ Z let

I(n) =
{
a ∈ R; kAMb,ω (a) − nω ∈ Z}

}
.

If I(n) = [an−, a
n
+] for some an− < an+ then we will say that (an−, a

n
+) is a non-

collapsed or open spectral gap. If an− = an+ then we will call {an−} a collapsed
or closed spectral gap. Note that noncollapsed spectral gaps are subsets of
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the resolvent whereas collapsed spectral gaps belong to the spectrum. In both
cases, the endpoints of gaps belong to the spectrum.

In the quasi-periodic case, when ω is an irrational frequency, the possible
values of the ids at gaps define the set of labels

M(ω) = {m+ nω, n,m ∈ Z} ∩ [0, 1] ,

which is dense in [0, 1]. Since the ids is a continuously increasing function of
a, the spectrum of the Almost Mathieu operator is a Cantor set if all spectral
gaps are open. For a general quasi-periodic Schrödinger operator, gaps can be
collapsed and, in fact, the spectrum may contain intervals. Figure 2 displays a
numerical computation of some of the gaps of the Almost Mathieu operator.
None of them appears to be collapsed.

0
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0 0.5 1 1.5 2 2.5 3 3.5 4

Fig. 2. Numerical computation of the ten biggest spectral gaps for the Almost
Mathieu operator. Coupling parameter b is in the vertical direction, whereas the
spectral one a is in the horizontal one. Shaded regions correspond to gaps

Due to all this, and to some physical arguments, Simon [18], after an
offer by Kac, posed the following problems on the Cantor structure for the
spectrum of the Almost Mathieu operator. The first one is the “Ten Martini
Problem”: for ω irrational and b �= 0 prove that the spectrum of the Almost
Mathieu operator is a Cantor set. The second one, which implies the first, is
the “Strong (or Dry) Ten Martini Problem” and, under the same hypothesis,
asks if all gaps, as predicted by the Gap Labelling Theorem, are open.

Concerning the Ten Martini Problem, we can prove the following [14].

Corollary 1. Assume that ω ∈ R is Diophantine, that is, there exist positive
constants c and r > 1 such that
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|sin 2πnω| > c

|n|r

for all n �= 0. Then, the spectrum of the Almost Mathieu operator, σAMb,ω , is
a Cantor set if b �= 0,±2.

Remark 2. Very recently Avila & Jitomirskaya have proved Cantor structure
for all irrational frequencies. The set of Diophantine frequencies is a total
measure subset of the real numbers.

Concerning the dry version of the Ten Martini Problem, using a reducibil-
ity theorem by Eliasson [8], one can also say something in the perturbative
regime [14]

Corollary 2. Let ω ∈ R be Diophantine. Then, there is a constant C =
C(ω) > 0 such that if 0 < |b| < C or 4/C < |b| < ∞ all the spectral gaps of
σAMb,ω are open.

In the remaining of this section we will sketch the reason why Corollary 1 is
an (almost) direct consequence of the following nonperturbative localization
result due to Jitomirskaya [10].

Theorem 1. Let ω be Diophantine. Then, if |b| > 2 the operator HAMb,ω,0 has
only pure point spectrum with exponentially decaying eigenfunctions.

1.2 Sketch of the Proof

Let b > 2 and ω Diophantine. Jitomirskaya proves that, in this case, HAMb,ω,0
has pure-point spectrum with exponentially decaying eigenfunctions. In par-
ticular (and this is everything that we will need from her result), there exists
a dense subset in σAMb,ω of point eigenvalues of HAMb,ω,0 whose eigenvectors are
exponentially localized. Let a be one of these eigenvalues and ψ = (ψn)n∈Z

its exponentially localized eigenvector. We are going to see that a is the end-
point of a noncollapsed spectral gap. From this the Cantor structure of the
spectrum follows immediately.

By hypothesis a ∈ σAMb,ω and ψ ∈ l2(Z) satisfy the Harper equation

ψn+1 + ψn−1 + b cos(2πωn)ψn = aψn, n ∈ Z ,

with some constants A, β > 0 such that

|ψn| ≤ A exp(−β|n|), n ∈ Z .

The very special form of the Almost Mathieu operator makes that the
Fourier transform of ψ,

ψ̃(θ) =
∑

n∈Z

ψne
inθ, θ ∈ T ,
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which is real analytic in |Imθ| < β, defines the following quasi-periodic Bloch
wave

xn = ψ̃ (2πωn+ θ) , n ∈ Z ,

and that this, satisfies the equation

(xn+1 + xn−1) +
4
b

cos(2πωn+ θ)xn =
2a
b
xn, n ∈ Z . (2)

for any θ ∈ T. Note that this is again a Harper equation whose parameters
have changed

(a, b) �→
(

2a
b
,
4
b

)

.

This invariance of the Almost Mathieu operator under Fourier transform
is known as Aubry duality [1]. Although the argument above requires the
existence of a point eigenvalue, Avron & Simon [2] proved the following form
of Aubry duality in terms of the ids

kAMb,ω (a) = kAM4/b,ω

(
2a
b

)

.

In particular, if we prove that 2a/b is the endpoint of a noncollapsed gap of
σAM4/b,ω we are done.

1.3 Reducibility of Quasi-Periodic Cocycles

Our main tool will be to use the dynamics of the eigenvalue equation (2) to
prove that a is an endpoint of a non-collapsed gap. To do so, it is convenient
to write down (2) as a first order system
(
xn+1

xn

)

=
(

2ak

b − 4
b cos θn −1
1 0

)(
xn
xn−1

)

, θn+1 = θn + 2πω , (3)

with θn ∈ T. Such first-order systems are usually called quasi-periodic skew-
products. The evolution of the vector vn = (xn+1, xn)T and the angle θn can
be seen as the iteration of a quasi-periodic cocycle on SL(2,R) × T

(v, θ) ∈ R
2 × T �→

(

AAM2a/b,4/b,ω(θ), ω)
)

(v, θ) =
(

AAM2a/b,4/b,ω(θ)v, θ + 2πω
)

,

setting

AAM2a/b,4/b,ω(θ) =
(

2a
b − 4

b cos θ −1
1 0

)

.

That is,

vn+1 =
(

2a
b − 4

b cos(2πωn+ φ) −1
1 0

)

· · ·
(

2a
b − 4

b cos(φ) −1
1 0

)

· v0
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and
θn = 2πωn+ θ0 .

When the frequency ω is rational the skew-product is periodic and, thanks
to Floquet theory, it can be reduced to a skew-product with constant matrix
by means of a periodic transformation. Quasi-periodic reducibility tries to
extend this theory to the quasi-periodic case. Let us now introduce some
basic notions.

Two cocycles (A,ω) and (B,ω) of SL(2,R)×T (not necessarily associated
to the Harper equation) are conjugated if there exists a continuous Z : T →
SL(2,R) such that

A(θ)Z(θ) = Z(θ + 2πω)B(θ), θ ∈ T .

In this case the corresponding quasi-periodic skew-products

un+1 = A(θ)un, θn+1 = θn + 2πω

and
vn+1 = B(θ)vn, θn+1 = θn + 2πω

are conjugated through the change u = Zv.
Particularly important to our purposes is the case of cocycles which are

conjugated to a constant cocycles. A cocycle (A,ω) is reducible to constant
coefficients if it is conjugated to a cocycle (B,ω) with B not depending on θ.

Remark 3. B is called the Floquet matrix. Neither B nor Z are unique.

The fundamental solution of a reducible system Xn(φ) has the following
Floquet representation:

Xn(φ) = Z(2πnω + φ)BnZ(φ)−1X0(φ) . (4)

In particular, and this is an important observation, if B = I then all solutions
of the corresponding skew-product are quasi-periodic with frequency ω. If the
cocycle comes from a Harper’s equation, then all the solutions of this equation
are quasi-periodic Bloch waves.

Now let us go back to our dual Harper’s equation. In terms of ψ̃ we have
that the relation

(
ψ̃(4πω + θ)
ψ̃(2πω + θ)

)

=
(

2a
b − 4

b cos θ −1
1 0

)(
ψ̃(2πω + θ)

ψ̃(θ)

)

holds for all θ ∈ T. The following Lemma shows that, in this situation, the
Almost Mathieu cocycle is reducible to constant coefficients.

Lemma 1. Let A : T → SL(2,R) be a real analytic map and ω be Diophan-
tine. Assume that there is a nonzero real analytic map v : T → R

2, such that
the relation
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v(θ + 2πω) = A(θ)v(θ)

holds for all θ ∈ T. Then, the quasi-periodic cocycle (A,ω) is reducible to
constant coefficients by means of a quasi-periodic transformation which is
real analytic. Moreover the Floquet matrix can be chosen to be of the form

B =
(

1 c
0 1

)

(5)

for some c ∈ R.

1.4 End of Proof

Classical Floquet theory for periodic Hill’s equation relates endpoints of gaps
to the corresponding Floquet matrices (which always exist because the system
is periodic). It turns out that, if an Almost Mathieu cocycle is reducible to
constant coefficients such characterization also holds. In fact, one can prove
that if an Almost Mathieu cocycle (or any other quasi-periodic Schrödinger
cocycle), for some a, b, ω fixed, is reducible to constant coefficients with
Floquet matrix B then a is at the endpoint of a spectral gap of the operator
if, and only if, trace B = ±2. Moreover the gap is collapsed if and, only if,
B = ±I.

Therefore, if

B =
(

1 c
0 1

)

then the gap is collapsed if, and only if, c = 0. Summing up, we have that 2a/b
is a noncollapsed spectral gap of σAM4/b,ω if, and only if, the Floquet matrix of
the corresponding cocycle, is the identity.

Now we can use an adaption of Ince’s argument [9] for the classical Math-
ieu equation to our case. If B was the identity then, as we learned from
Floquet representation (4), there would be two linearly independent real an-
alytic quasi-periodic Bloch waves of Harper’s equation

xn+1 + xn−1 +
4
b

cos(2πωn+ φ)xn =
2a
b
xn, n ∈ Z .

Passing to the dual, this would tell us that

xn+1 + xn−1 + b cos(2πωn)xn = axn, n ∈ Z .

has two linearly independent solutions in l2(Z). This is a contradiction with
the limit-point character of the Almost Mathieu operator (or the preservation
of the Wronskian for the difference equation).

Therefore B �= I (c �= 0) so that 2a/b is the endpoint of a noncollapsed
gap of σAM4/b,ω. Since such endpoints are dense in the spectrum, this must be
a Cantor set for all b �= 0,±2 and Diophantine frequencies.



Cantor Spectrum for Quasi-Periodic Schrödinger Operators 87

2 Extension to Real Analytic Potentials

In the proof of the Ten Martini Problem that we have presented above, there
are some features which are specific of the Almost Mathieu operator. Some
other, however, can be extended to more general potentials. Let us try to
reproduce the proof for a real analytic potential V : T → R instead of b cos θ.
The corresponding Schrödinger operators are of the form

(HV,ω,φx)n = xn+1 + xn−1 + V (2πωn+ φ)xn .

The dual model of this operator is the following long-range operator,

(LV,ω,φx)n =
∑

k∈Z

Vkxn+k + 2 cos(2πωn+ φ)xn

so that analytic quasi-periodic Bloch waves of HV,ω,φ correspond to exponen-
tially localized eigenvectors of LV,ω,φ. Bourgain & Jitomirskaya [3] proved
that, for some ε > 0, LV,ω,φ has pure-point spectrum with exponentially
localized eigenfunctions for almost all φ ∈ T if

|V |ρ := sup
|Imθ|<ρ

|V (θ)| < ε

and ω is Diophantine.
Using this result and some facts on the ids one can show [15] that for

Lebesgue almost every a ∈ R, the cocycle

(Aa−V , ω) =
((

a− V (θ) −1
1 0

)

, ω

)

is reducible to constant coefficients if |V |ρ < ε and ω is Diophantine. Also,
there exists a dense set of values of a in the spectrum such that the corre-
sponding cocycle is reducible to

B =
(

1 c
0 1

)

.

Therefore, these values of a are at endpoints of spectral gaps of HV,ω,φ.
However, we cannot use Ince’s argument and it may happen that some of
these are collapsed (see Fig. 3). In fact, there are examples of quasi-periodic
Schrödinger operators (with V small, ω Diophantine) which do not display
Cantor spectrum (see De Concini & Johnson [6]).

Nevertheless, even if c can be zero, Moser & Pöschel [13] showed that,
in this reducible setting, a closed gap can be opened by means of an arbi-
trarily small and generic perturbation of the potential, as it is shown in [15]
(the proof by Moser & Pöschel is in the continuous case, although it extends
without trouble to the discrete). Here generic is meant in the Gδ-sense, con-
sidering the space of real analytic perturbations in some fixed complex strip
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Fig. 3. Left: Endpoints of some spectral gaps of HbV,ω,φ, with V (θ) = cos(θ) +
0.3 cos(2θ) and several values of b (in the vertical direction) and ω = (

√
5 − 1)/2.

Note the spectral gap which is collapsed. Right: Magnification of the figure around
the collapsed gap

furnished with the supremum norm. Since there is, at most, a countable num-
ber of collapsed spectral gaps, we can conclude that, a generic potential with
|V |ρ < ε, for some ρ fixed, has Cantor spectrum for Diophantine frequencies
(see again [15]). This generalizes nonperturbatively results obtained by Elias-
son [8] on the genericity of Cantor spectrum for quasi-periodic Schrödinger
operators.

3 Cantor Spectrum for Specific Models

The results in the previous section on the genericity of Cantor spectrum for
quasi-periodic Schrödinger operators have the disadvantage that they cannot
be applied to specific examples of Schrödinger operators. In this section we
will briefly describe how to get Cantor spectrum, and opening of all gaps,
for some prescribed families of quasi-periodic Schrödinger operators. This is
joint work with Broer & Simó [4, 16].

Here we will consider continuous Schrödinger operators, and for the sake
of definiteness, the following quasi-periodic Mathieu operator

HQPMb,ω,φ x = −x′′ + b
d∑

j=1

cos(ωjt)x ,

where now x ∈ L2(R). Let us consider the self-adjoint extension of HQPMb,ω,φ to
L2(R) whose spectrum, again, does not depend on φ (see Fig. 4). For such
operators we can prove the following.

Theorem 2. Let d ≥ 2. Then for almost all ω = (ω1, . . . , ωd) ∈ R
d there is

a C = C(ω) such that for all values of 0 < |b| < C, except for a countable
set, the spectrum of the quasi-periodic Mathieu operator HQPMb,ω,φ has all gaps
open and, thus, it is a Cantor set.
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Fig. 4. Spectrum of HQPM
b,ω,φ for several values of b vertical direction. Shaded regions

correspond to gaps. Here ω = (1, γ)T where γ = (1+
√

5)/2. Source Broer & Simó [5]

The idea for the proof is based on the study of gap boundaries as functions
of the coupling constant b. The set formed by the closure of a certain gap
(with fixed label) in the (a, b)-plane will be called a resonance tongue. When
the boundaries of a certain resonance tongue merge for two different values
of b we will speak of an instability pocket (see Fig. 5).

In the periodic case it is known (see, e.g. Rellich [17]) that tongue bound-
aries are real analytic functions. In the quasi-periodic case the same methods
cannot be applied, but using kam techniques it can be seen that tongue
boundaries are real analytic if |b| is smaller than a certain constant C which
depends on the Diophantine class of ω [16].

Using Birkhoff Normal Form, we show that all these tongue boundaries
(which we know are real analytic) have some finite order of contact at b = 0
[4]. In particular, each gap can collapse at most a finite number of times.
Since the number of gaps is countable we only have to take out a countable
subset of |b| < C.

Remark 4. This is a perturbative result (the smallness condition on the poten-
tial depends on the precise Diophantine conditions on the frequency vector)
but it holds irrespectively of the dimension d (contrary to the methods in the
first two sections).

Remark 5. The same result holds for any quasi-periodic potential whose
Fourier coefficients are all nonzero.
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a

b

Non-collapsed gaps

Collapsed gap

Instability pocket

Resonance tongue boundaries

Fig. 5. Resonance tongue with pocket in the (a, b)-plane giving rise to spectral
gaps on each horizontal line with constant b. Note how collapse of gaps corresponds
to crossings of tongue boundaries at tips of an instability pocket

Remark 6. In [4] it is shown that by means of suitable and arbitrarily small
perturbations of the potential of HQPMb,ω,φ it is possible to produce pockets at
any gap of the operator.
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Adiabatic Theorems
and Reversible Isothermal Processes∗

Walid K. Abou-Salem and Jürg Fröhlich
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CH-8093 Zürich, Switzerland

Abstract. Isothermal processes of a finitely extended, driven quantum system in
contact with an infinite heat bath are studied from the point of view of quantum
statistical mechanics. Notions like heat flux, work and entropy are defined for tra-
jectories of states close to, but distinct from states of joint thermal equilibrium.
A theorem characterizing reversible isothermal processes as quasi-static processes
(“isothermal theorem”) is described. Corollaries concerning the changes of entropy
and free energy in reversible isothermal processes and on the 0th law of thermody-
namics are outlined.

1 Introduction

The problem to derive the fundamental laws of thermodynamics, the 0th,
1st, 2nd (and 3rd) law, from kinetic theory and non-equilibrium statistical
mechanics has been studied since the late 19th century, with contributions
by many distinguished theoretical physicists including Maxwell, Boltzmann,
Gibbs and Einstein. In this note, we report on some recent results concerning
isothermal processes that have grown out of our own modest attempts to
bring the problem just described a little closer to a satisfactory solution;
(see [1] for a synopsis of our results).

In the study of the 0th law and of Carnot processes isothermal processes
play an important role. Such processes arise when a system with finitely
many degrees of freedom, the “small system”, is coupled diathermally to an
infinitely extended, dispersive system, the “heat bath”, e.g., one consisting of
black-body radiation, or of a gas of electrons (metals), or of magnons (mag-
netic materials), at positive temperature. (Diathermal contacts are couplings
that preserve all extensive quantities except for the “internal energy” of the
“small system”. The latter will be precisely defined later.) During the past
ten years, a particular phenomenon, “return to equilibrium”, encountered in
the study of isothermal processes of quantum-mechanical systems, has been
analyzed for simple (non-interacting) models of heat baths, by several groups
of people [2–6]: After coupling the small system to the heat bath, the state
of the coupled system approaches an equilibrium state at the temperature
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of the heat bath, as time t tends to ∞. Further, if all contacts of the heat
bath to its environment are broken the state of the heat bath returns to its
original equilibrium state [7,8]. (The state of an isolated infinite heat bath is
thus characterized by a single quantity: its temperature!)

The results in [2–6] are proven using spectral- and resonance theory, start-
ing from the formalism developed in [9]. If HR denotes the Hilbert space of
state vectors of the infinite heat bath, R, at a fixed temperature (kβ)−1,
where k denotes Boltzmann’s constant, (HR is obtained with the help of the
GNS construction, see [9,10]), and HΣ denotes the Hilbert space of pure state
vectors of the “small system” Σ, the Hilbert space of general (in particular
mixed) states of the composed system, R∨Σ, is given by

H ≡ HR∨Σ := HR ⊗ (HΣ ⊗HΣ) ; (1)

see [4, 9]. The equilibrium state of the heat bath, or reservoir, R at inverse
temperature kβ corresponds to a vector ΩR

β ∈ HR, and a general mixed
state of the small system Σ can be described as the square root of a density
matrix, which is a Hilbert-Schmidt operator on HΣ , or, in other terms, as a
vector in HΣ ⊗HΣ .

The dynamics of the composed system is generated by an (in general,
time-dependent) thermal Hamiltonian, or Liouvillian,

L(t) := L0(t) + g(t)I , (2)

(the “standard Liouvillian”, see, e.g., [6, 9]), where

L0(t) = LR
β ⊗ (1 ⊗ 1) + 1 ⊗ (HΣ0 (t) ⊗ 1) − 1 ⊗ (1 ⊗HΣ0 (t)) (3)

is the Liouvillian of the uncoupled system, LR
β is the Liouvillian of the heat

bath, with LR
β Ω

R
β = 0, HΣ0 (t) is the (generally time-dependent) Hamiltonian

of the small system, and where g(t)I is a spatially localized term describing
the interactions between R and Σ, with a time-dependent coupling constant
g(t). Concrete models are analyzed in [2–7].

We will only consider heat baths with a unique equilibrium state at each
temperature; (no phase coexistence). If L0(t) ≡ L0 and g(t) ≡ g are inde-
pendent of t, for t ≥ t∗, “return to equilibrium” holds true if we can prove
that L has a simple eigenvalue at 0 and that the spectrum, σ(L), of L is
purely continuous away from 0; see [2–4]. The eigenvector, Ωβ ≡ ΩR∨Σ

β , of
L corresponding to the eigenvalue 0 is the thermal equilibrium state of the
coupled system R∨Σ at temperature (kβ)−1. Since L0 tends to have a rich
spectrum of eigenvalues (embedded in continuous spectrum), it is an a pri-
ori surprising consequence of interactions between R and Σ that the point
spectrum of L consists of only one simple eigenvalue at 0; (see [2–6, 11] for
hypotheses on the interaction I and results). Under suitable hypotheses on
R and Σ, see [2–4], one can actually prove that “return to equilibrium” is
described by an exponential law involving a finite relaxation time, τR.
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If the Liouvillian L(t) of R∨Σ depends on time t, but with the property
that, for all times t, L(t) has a simple eigenvalue at 0 corresponding to an
eigenvector Ωβ(t), then Ωβ(t) can be viewed as an instantaneous equilibrium
(or reference) state, and τR(t) is called instantaneous relaxation time of R∨Σ.
Let τ be the time scale over which L(t) changes appreciably. Assuming that,
at some time t0, the state , Ψ(t0), of R ∨Σ is given by Ωβ(t0), it is natural
to compare the state Ψ(t) of R ∨Σ at a later time t with the instantaneous
equilibrium state Ωβ(t) and to estimate the norm of the difference Ψ(t) −
Ωβ(t). One would expect that if τ � supt τR(t), then

Ψ(t) � Ωβ(t) .

In [12], we prove an “adiabatic theorem”, which we call “isothermal the-
orem”, saying that

Ψ(t) τ→∞→ Ωβ(t) , (4)

for all times t ≥ t0. The purpose of our note is to carefully state this theorem
and various generalizations thereof and to explain some of its consequences;
e.g., to show that quasi-static (τ → ∞) isothermal processes are reversible
and that, in the quasi-static limit, a variant of the 0th law holds. We also
propose general definitions of heat flux and of entropy for trajectories of states
of R∨Σ sampled in arbitrary isothermal processes and use the “isothermal
theorem” to relate these definitions to more common ones. Details will appear
in [1, 12].

2 A General “Adiabatic Theorem”

In this section we carefully state a general adiabatic theorem which is a
slight improvement of results in [13, 14] concerning adiabatic theorems for
Hamiltonians without spectral gaps. Our simplest result follows from those in
[13,14] merely by eliminating the superfluous hypothesis of semiboundedness
of the generator of time evolution.

Let H be a separable Hilbert space, and let {L(s)}s∈I , with I ⊂ R a
compact interval, be a family of selfadjoint operators on H with the following
properties:

(A1) The operators L(s), s ∈ I, are selfadjoint on a common domain, D,
of definition dense in H.

(A2) The resolvent R(i, s) := (L(s) − i)−1 is bounded and differentiable,
and L(s)Ṙ(i, s) is bounded uniformly in s ∈ I, where ˙( ) denotes the deriva-
tive with respect to s.

Existence of time evolution. If assumptions (A1) and (A2) hold then there
exist unitary operators {U(s, s′)|s, s′ ∈ I} with the properties:

For all s, s′, s′′ in I,

U(s, s) = 1 , U(s, s′)U(s′, s′′) = U(s, s′′) ,
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U(s, s′) is strongly continuous in s and s′, and

i
∂

∂s
U(s, s′)Ψ = L(s)U(s, s′)Ψ , (5)

for arbitrary Ψ ∈ D, s, s′ in I; (U is called a “propagator”).
This result follows from, e.g., Theorems X.47a and X.70 in [15] in a

straightforward way; see also Theorem 2 of Chap. XIV in [16]. (Some suf-
ficient conditions for (A1) and (A2) to hold are discussed in [12].)

In order to prove an adiabatic theorem, one must require some additional
assumptions on the operators L(s).

(A3) We assume that L(s) has an eigenvalue λ(s), that {P (s)} is a family
of finite rank projections such that L(s)P (s) = λ(s)P (s), P (s) is twice con-
tinuously differentiable in s with bounded first and second derivatives, for all
s ∈ I, and that P (s) is the spectral projection of L(s) corresponding to the
eigenvalue λ(s) for almost all s ∈ I.

We consider a quantum system whose time evolution is generated by a
family of operators

Lτ (t) := L

(
t

τ

)

,
t

τ
=: s ∈ I , (6)

where {L(s)}s∈I satisfies assumptions (A1)-(A3). The propagator of the sys-
tem is denoted by Uτ (t, t′). We define

U (τ)(s, s′) := Uτ (τs, τs′) (7)

and note that U (τ)(s, s′) solves the equation

i
∂

∂s
U (τ)(s, s′)Ψ = τL(s)U (τ)(s, s′)Ψ , Ψ ∈ D . (8)

Next, we define

La(s) := L(s) +
i

τ
[Ṗ (s), P (s)] (9)

and the corresponding propagator, U (τ)
a (s, s′), which solves the equation

i
∂

∂s
U (τ)
a (s, s′)Ψ = τLa(s)U (τ)

a (s, s′)Ψ, Ψ ∈ D . (10)

The propagator U (τ)
a describes what one calls the adiabatic time evolution.

(Note that the operators La(s), s ∈ I, satisfy (A1) and (A2), since, by (A3),
i
τ [Ṗ (s), P (s)] are bounded, selfadjoint operators with bounded derivative in
s.)

Adiabatic Theorem. If assumptions (A1)–(A3) hold then
(i) U (τ)

a (s′, s)P (s)U (τ)
a (s, s′) = P (s′) (intertwining property), for arbitrary

s, s′ in I, and (ii) limτ→∞ sups,s′∈I ||U (τ)(s, s′) − U
(τ)
a (s, s′)|| = 0.
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A proof of this result can be inferred from [14].

Remarks.
(1) We note that U (τ)(s′, s) = U (τ)(s, s′)∗.
(2) With more precise assumptions on the nature of the spectrum of

{L(s)}, one can obtain information about the speed of convergence in (ii),
as τ → ∞; see [12–14]. A powerful strategy to obtain such information is to
make use of complex spectral deformation techniques, such as dilatation or
spectral-translation analyticity.

These techniques also enable one to prove an
(3) Adiabatic Theorem for Resonances, [17]. This result resembles the

adiabatic theorem described above, but eigenstates of L(s) are replaced by
resonance states, and one must require the adiabatic time scale τ to be small
as compared to the life time, τres(s), of a resonance of L(s), uniformly in s ∈ I.
(For shape resonances, the techniques in [18] are useful. Precise statements
and proofs can be found in [17].) Similar ideas lead to an adiabatic theorem
in non-equilibrium statistical mechanics, [22].

3 The “Isothermal Theorem”

In this section, we turn to the study of isothermal processes of “small” driven
quantum systems, Σ, in diathermal contact with a heat bath, R, at a fixed
temperature (kβ)−1. Our notations are as in Sect. 1; see, (1), (2), (3).

Let Lτ (t) := L( tτ ) denote the Liouvillian of the coupled system R ∨ Σ,
where {L(s)}s∈I is as in (2) and (1) of Sect. 1 and satisfies assumptions (A1)
and (A2) of Sect. 2. The interval

Iτ = {t | t
τ
∈ I ⊂ R}

is the time interval during which an isothermal process of R∨Σ is studied.
We assume that Σ is driven “slowly”, i.e., that τ is large as compared to

the relaxation time τR = maxs∈I τR(s) of R∨Σ.
Assumption (A3) of Sect. 2 is supplemented with the following more spe-

cific assumption.
(A4) For all s ∈ I ≡ [s0, s1], the operator L(s) has a single, simple eigen-

value λ(s) = 0, the spectrum, σ(L(s))\{0}, of L(s) being purely continuous
away from 0. It is also assumed that, for s ≤ s0, L(s) ≡ L is independent of
s and has spectral properties sufficient to prove return to equilibrium [3,4].

Let Ωβ(s) ∈ H denote the eigenvector of L(s) corresponding to the eigen-
value 0, for s ≤ s1. Then Ωβ( tτ ) is the instantaneous equilibrium state of
R∨Σ at time t. Let P (s) = |Ωβ(s)〉〈Ωβ(s)| denote the orthogonal projection
onto Ωβ(s); P (s) is assumed to satisfy (A3), Sect. 2.

Let Ψ(t) be the “true” state of R∨Σ at time t; in particular

Ψ(t) = Uτ (t, t′)Ψ(t′) ,
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where Uτ (t, t′) is the propagator corresponding to {Lτ (t)}; see (5)–(7),
Sect. 2. By the property of return to equilibrium and assumption (A4),

Ψ(t) = Ωβ , t ≤ τs0 , (11)

for an arbitrary initial condition Ψ(−∞) ∈ H at t = −∞.
We set

Ψ (τ)(s) = Ψ(τs) , (12)

and note that, with the notations of (7), (8), Sect. 2, and thanks to (11)

Ψ (τ)(s) = U (τ)(s, s0)Ωβ , (13)

for s ∈ I.

Isothermal Theorem. Suppose that L(s) and P (s) satisfy assumptions
(A1)–(A3), Sect. 2, and (A4) above. Then

lim
τ→∞

sup
s∈I

||Ψ (τ)(s) −Ωβ(s)|| = 0 .

Remarks. (1) The isothermal theorem follows readily from the adiabatic the-
orem of Sect. 2 and from (13) and the definition of Ωβ(s).

(2) We define the expectation values (states)

ωβt (a) :=
〈

Ωβ

(
t

τ

)

, aΩβ

(
t

τ

)〉

(14)

and
ρt(a) := 〈Ψ(t), aΨ(t)〉 , (15)

where a is an arbitrary bounded operator on H = HR∨Σ . Then the isothermal
theorem says that

ρt(a) = ωβt (a) + ε
(τ)
t (a) , (16)

where

lim
τ→∞

|ε(τ)t (a)|
||a|| = 0 , (17)

for all times t ∈ Iτ .
(3) If the complex spectral deformation techniques of [2,3] are applicable

to the analysis of the coupled system R∨Σ then

|ε(τ)t (a)| ≤ O(τ−
1
2 )||a|| ; (18)

see [11,17].
(4) All our assumptions, (A1)–(A4), can be verified for the classes of

systems studied in [2–6] for which return to equilibrium has been estab-
lished therein. They can also be verified for a “quantum dot” coupled to
non-interacting electrons in a metal, or for an impurity spin coupled to a
reservoir of non-interacting magnons; see [1, 11,12].
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4 (Reversible) Isothermal Processes

In this section, we study general isothermal processes and use the isothermal
theorem to characterize reversible isothermal processes.

It will be convenient to view the heat bath R as the thermodynamic limit
of an increasing family of quantum systems confined to compact subsets
of physical space, as discussed in [10, 19]. The pure states of a quantum
mechanical system confined to a bounded region of physical space are unit
rays in a separable Hilbert space, while its mixed states are described by
density matrices, which are positive trace-class operators with unit trace.
Before passing to the thermodynamic limit of the heat bath, the dynamics
of the coupled system, R ∨ Σ, is generated by a family of time-dependent
Hamiltonians

H(t) ≡ HR∨Σ(t) := HR +HΣ(t) , (19)

where
HΣ(t) = HΣ0 (t) + g(t)W , (20)

HΣ0 (t) is as in Sect. 1, and W is the interaction Hamiltonian (as opposed to
the interaction Liouvillian, I = adW , introduced in Sect. 1).

Let P(t) denote the density matrix describing the state of the coupled
system, R ∨ Σ, at time t, (before the thermodynamic limit for R is taken).
Then P(t) satisfies the Liouville equation

Ṗ(t) = −i[H(t),P(t)] . (21)

The instantaneous equilibrium-, or reference state of the coupled system
is given, in the canonical ensemble, by the density matrix

Pβ(t) = Zβ(t)−1e−βH(t) , (22)

where
Zβ(t) = tr(e−βH(t)) (23)

is the partition function, and tr denotes the trace. We assume that the ther-
modynamic limits

ρt(·) = TD lim
R
tr(P(t)(·)) (24)

ωβt (·) = TD lim
R
tr(Pβ(t)(·)) (25)

exist on a suitable kinematical algebra of operators describing R ∨ Σ; see
[4, 10,19].

The equilibrium state and partition function of a finitely extended heat
bath are given by

PβR = (ZβR)−1e−βH
R
, (26)

ZβR = tr(e−βH
R

) , (27)

respectively.
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Next, we introduce thermodynamic potentials for the small system Σ: The
internal energy of Σ in the “true” state, ρt, of R∨Σ at time t is defined by

UΣ(t) := ρt(HΣ(t)) (28)

and the entropy of Σ in the state ρt at time t by

SΣ(t) := −k TD lim
R
tr(P(t)[lnP(t) − lnPβR]) . (29)

Note that we here define SΣ(t) as a relative entropy (with the aim of sub-
tracting the divergent contribution of the heat bath to the total entropy). A
general inequality for traces, see [10], says that

SΣ(t) ≤ 0 . (30)

The free energy of Σ in an instantaneous equilibrium state, ωβt , of R∨Σ
is defined by

FΣ(t) := −kT TD lim
R
ln

(

Zβ(t)

ZβR

)

. (31)

Next, we define quantities associated not with states but with the ther-
modynamic process carried out by R∨Σ: the heat flux into Σ and the work
rate, or power, of Σ. Let δ denote the so called “imperfect differential”. Then

δQΣ

dt
(t) := TD lim

R
− d

dt
tr(P(t)HR) , (32)

and
δAΣ

dt
(t) := ρt(ḢΣ(t)) ; (33)

see [1, 8, 12] for details.
We are now prepared to summarize our main results on isothermal

processes. The first two results are general and concern the first law of ther-
modynamics and the relationship between the rate of change of entropy and
the heat flux into Σ. The remaining three results are corollaries pertaining
to free energy and changes of entropy in reversible isothermal processes, i.e.,
processes in which states are sampled at equilibrium, and on the zeroth law
of thermodynamics.

(1) From definitions (28), (32) and (33) and the Liouville equation (21)
it follows that

U̇Σ(t) =
δQΣ

dt
(t) +

δAΣ

dt
(t) , (34)

which is the first law of thermodynamics; (hardly more than a definition of
δAΣ

dt ).
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(2) Note that, by the unitarity of time evolution and the cyclic invariance
of the trace,

d

dt
tr(P(t)lnP(t)) = 0 ,

and
d

dt
tr(P(t)lnZβR) =

d

dt
lnZβR = 0 .

Together with definitions (26), (29) and (32), this implies that

ṠΣ(t) =
1
T

δQΣ

dt
(t) , (35)

for arbitrary isothermal processes at temperature T = (kβ)−1.
(3) Next, we consider an isothermal process of R∨Σ during a finite time

interval Iτ = [τs0, τs1], with s0 and s1 fixed. The initial state ρτs0 of R∨Σ is
assumed to be an equilibrium state ωβτs0 of the Liouvillian Lτ (τs0) = L(s0).
We are interested in the properties of such a process when τ becomes large,
i.e., when the process is quasi-static.

Result. Quasi-static isothermal processes are reversible (in the sense that
all intermediate states ρt of R∨Σ, t ∈ Iτ , converge in norm to instantaneous
equilibrium states ωβt , as τ → ∞).

This result is an immediate consequence of the isothermal theorem. It
means that, for all practical purposes, an isothermal process with time scale
τ is reversible if τ � τR = maxs∈I τR(s).

(4) For reversible isothermal processes, the usual equilibrium definitions
of internal energy and entropy of the small system Σ can be used:

UΣrev(t) := ωβt (H
Σ(t)) , (36)

SΣrev(t) := −k TD lim
R
tr(Pβ(t)[lnPβ(t)−lnPR]) =

1
T

(UΣrev(t)−FΣ(t)) , (37)

where the free energy FΣ(t) has been defined in (31), and the second equation
in (37) follows from (22), (26), (31) and (36). Equations (37) and (31) then
imply that

ṠΣrev(t) =
1
T

(
d

dt
ωβt (H

Σ(t)) − ωβt (Ḣ
Σ(t))

)

.

Recalling (34) and (35), and applying the isothermal theorem, we find that

ṠΣ(t) → ṠΣrev(t) , (38)
δAΣ

dt
(t) → ḞΣ(t) , (39)

as τ → ∞.
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(5) We conclude this overview by considering a quasi-static isothermal
process of R ∨Σ with HΣ(s) → HΣ0 , g(s) → 0, as s ↗ s1, i.e., the interac-
tions between R and Σ are switched off at the end of the process. Then the
isothermal theorem implies that

lim
τ→∞

lim
s↗s1

ρτs = ωβR ⊗ ωβΣ , (40)

where ωβR(·) = (ZβR)−1tr(e−βH
R ·), see (26), and

ωβΣ(·) = (ZβΣ)−1tr(e−βH
Σ
0 ·) (41)

is the Gibbs state of the small system Σ at the temperature (kβ)−1 of the
heat bath, independently of the properties of the diathermal contact (i.e., of
the interaction Hamiltonian W ), assuming that (A1)–(A4) hold for s < s1.

This result and the property of return to equilibrium for the heat bath R
yield, in essence, the 0th law of thermodynamics.

Carnot processes and the 2nd law of thermodynamics are discussed in [1];
(see also [10,20,21]). An important variant of the adiabatic theorem for non-
equilibrium stationary states will appear in [22]. The analysis in [22] is based
on some basic techniques developed in [23].
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Abstract. We present a construction of the algebra of operators and the Hilbert
space for a quantum massless field in 1+1 dimensions.

1 Introduction

It is usually stated that quantum massless bosonic fields in 1+1 dimensions
(with noncompact space dimension) do not exist. With massive fields the
correlation function

〈Ω|φ(f1)φ(f2)Ω〉 =
∫

dp
2π2Ep

f̂∗1 (Ep, p)f̂2(Ep, p) (1)

(where Ep =
√
p2 +m2) is well defined but in the limit m → 0 diverges be-

cause of the infrared problem. The limit exists only after adding an additional
nonlocal constraint on the smearing functions:

f̂(0, 0) =
∫

dtdxf(t, x) = 0 . (2)

Under this constraint it is not difficult to construct massless fields in 1+1
dimension (see eg. [15], where the framework of the Haag-Kastler axioms is
used).

Massless fields are extensively used for example in string theory (albeit
most often after Wick rotation to the space with Euclidean signature). They
also appear as the scaling limit of massive fields [6]. Usually, in these ap-
plications, the constraint (2) appears to be present at least implicitly. e.g.
in string amplitudes one imposes the condition that sum of all momenta is
equal to 0. Nevertheless, it seems desirable to have a formalism for massless
1+1-dimensional fields free of this constraint.

In the literature there are many papers that propose to use an indefinite
metric Hilbert space for this purpose [4,9–13]. Clearly, an indefinite metric is
not physical and in order to determine physical observables one needs to per-
form a reduction similar to that of the Gupta-Bleuler formalism used in QED.
The outcome of this Gupta-Bleuler-like procedure is essentially equivalent to

J. Dereziński and K.A. Meissner: Quantum Massless Field in 1+1 Dimensions, Lect. Notes
Phys. 690, 107–127 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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imposing the constraint (2) [11]. Therefore, we do not find the indefinite
metric approach appropriate.

In this paper we present two explicit constructions of (positive definite)
Hilbert spaces with representations of the massless Poincaré algebra in 1+1
dimensions and local fields (or at least their exponentials). We allow all
test functions f that belong to the Schwartz class on the 1+1 dimensional
Minkowski space, without the constraint (2). We try to make sure that as
many Wightman axioms as possible are satisfied.

In the first construction we obtain a separable Hilbert space and well
defined fields, however we do not have a vacuum vector. In the second con-
struction, the Hilbert space is non-separable, only exponentiated fields are
well defined, but there exists a vacuum vector. Thus, neither of them satisfies
all Wightman axioms. Nevertheless, we believe that both our constructions
are good candidates for a physically correct massless quantum field theory in
1+1 dimensions.

Our constructions have supersymmetric extensions, which we describe at
the end of our article.

In the literature known to us the only place where one can find a treatment
of massless fields in 1+1 dimension similar to ours is [1,2] by Acerbi, Morchio
and Strocchi. Their construction is equivalent to our second (nonseparable)
construction. We have never seen our first (separable) construction of massless
fields in the literature.

Acerbi, Morchio and Strocchi start from the C∗-algebra associated to
the CCR over the symplectic space of solutions of the wave equation para-
metrized by the initial conditions. Then they apply the GNS construction to
the Poincaré invariant quasi-free state obtaining a non-regular representation
of CCR.

In our presentation we prefer to use the derivatives of right and left movers
to parametrize fields, rather than the initial conditions. We also avoid, as
long as possible, to invoke abstract constructions from the theory of C∗-
algebras, which may be less transparent to some of the readers. We explain
the relationship between our formalism and that of [1, 2]. The symmetry
structure of this theory is surprisingly rich. Some of the objects are covariant
only under Poincaré group but there are others that are covariant under
larger groups: A+(1,R)×A+(1,R), SL(2,R)×SL(2,R), Diff+(R)×Diff+(R),
Diff+(S1) × Diff+(S1).

2 Fields

The action of the 1+1 dimensional free real scalar massless field theory reads

S =
1
2

∫

dtdx
(
(∂tφ)2 − (∂xφ)2

)
. (3)

This leads to the equations of motion
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(−∂2
t + ∂2

x)φ = 0 . (4)

The solution of (4) is the sum of right and left movers, i.e. functions of (t−x)
and (t+ x) respectively:

φ(t, x) = φR(t− x) + φL(t+ x) . (5)

We will often used “smeared” fields in the sense

φ(f) =
∫

dtdxφ(t, x)f(t, x) ,

where we assume that f are real Schwartz functions. Because of (5), they can
be written in the form

φ(f) = φ(gR, gL) ,

where
ĝR(k) = f̂(k, k), ĝL(k) = f̂(k,−k) ,

(k ≥ 0) and the Fourier transforms of the test function f and g are defined
as

f̂(E, p) :=
∫

dtdx f(t, x) eiEt−ipx , (6)

ĝ(k) :=
∫ ∞

−∞
dtg(t)e−ikt . (7)

The function gR corresponds to right movers and gL to left movers. Note that

ĝR(0) = ĝL(0) =: ĝ(0) . (8)

ĝ(0) is real, because function f is real.
We introduce the notation

(g1|g2) :=
1
2π

lim
ε↘0





∞∫

ε

dk
k
ĝ∗1(k)ĝ2(k) + ln(ε/µ)ĝ∗1(0)ĝ2(0)



 , (9)

where µ is a positive constant having the dimension of mass. For functions
that satisfy ĝ(0) = 0, (g1|g2) is a (positive) scalar product – otherwise it is
not positive definite and therefore cannot be used directly in the construction
of a Hilbert space. Such a scalar product corresponds to quantization of the
theory in a constant compensating background.

In view of the infrared divergence we factorize the Hilbert space into two
parts – one that is infrared safe and the second that in some sense regularizes
the divergent part.

We introduce the creation a†R(k), a†L(k) and annihilation aR(k), aL(k)
operators as well as pair of operators (χ, p). They satisfy the commutation
relations
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[

aR(k), a†R(k′)
]

= 2πkδ(k − k′) ,
[

aL(k), a†L(k′)
]

= 2πkδ(k − k′) ,

[χ, p] = i (10)

with all other commutators vanishing.
To proceed we choose two real functions σR(x) and σL(x) satisfying

σ̂R(0) = σ̂L(0) = 1 (11)

and otherwise arbitrary. To simplify further formulae we define the combina-
tions

aσR(k) := aR(k) − iσ̂R(k)χ

a†σR(k) := a†R(k) + iσ̂∗
R(k)χ

aσL(k) := aL(k) − iσ̂L(k)χ

a†σL(k) := a†L(k) + iσ̂∗
L(k)χ (12)

and therefore
[

aσR(k), a†σR(k′)
]

= 2πkδ(k − k′) ,
[

aσL(k), a†σL(k′)
]

= 2πkδ(k − k′) ,

[aσR(k), p] = σ̂R(k) ,
[

a†σR(k), p
]

= −σ̂∗
R(k) ,

[aσL(k), p] = σ̂L(k) ,
[

a†σL(k), p
]

= −σ̂∗
L(k). (13)

Now we are in a position to introduce the field operator φ(gR, gL), de-
pending on a pair of functions gR, gL satisfying (8).

φ(gR, gL) =
∫

dk
2πk

(

(ĝR(k) − ĝ(0)σ̂R(k))a†σR(k)

+(ĝ∗R(k) − ĝ(0)σ̂∗
R(k))aσR(k) + (ĝL(k) − ĝ(0)σ̂L(k))a†σL(k)

+(ĝ∗L(k) − ĝ(0)σ̂∗
L(k))aσL(k)

)

+ ĝ(0)p . (14)

The field φ(gR, gL) is hermitian and satisfies the commutation relation

[φ(gR1, gL1), φ(gR2, gL2)]
= (gR1|gR2) − (gR2|gR1) + (gL1|gL2) − (gL2|gL1)
= i2Im(gR1|gR2) + i2Im(gL1|gL2) . (15)

The commutator in (15) does not depend on the functions σR, σL.
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3 Poincaré Covariance

Let A+(1,R) denote the group of orientation preserving affine transforma-
tions of the real line, that is the group of maps t �→ at + b with a > 0. The
proper Poincaré group in 1+1 dimension can be naturally embedded in the
direct product of two copies of A+(1,R), one for the right movers and one
for the left movers.

The infinitesimal generators of the right A+(1,R) group will be denoted
HR (the right Hamiltonian) and DR (the right generator of dilations) and
they satisfy the commutation relations

[DR,HR] = iHR .

The representation of these operators in terms of the creation and anni-
hilation operators is given by

HR =
∫

dk
2π

a†σR(k)aσR(k) ,

DR =
i
2

∫
dk
2π

(

a†σR(k)∂kaσR(k) −
(
∂ka

†
σR(k)

)
aσR(k)

)

.

(16)

Their action on fields is given by

[HR, φ(gR, gL)] = −iφ(∂tgR, 0) ,
[DR, φ(gR, gL)] = iφ(∂ttgR, 0) ,

and in the exponentiated form by

eisHRφ(gR, gL)e−isHR = φ(gR(· − s), gL
eisDRφ(gR, gL)e−isDR = φ(e−sgR(e−s·), gL) .

For (a, b) ∈ A+(1,R) we set ra,bg(t) := a−1g(a−1(t− b)) and

RR(a, b) = eilnaDReibHR .

RR is a unitary representation of A+(1,R), which acts naturally on the fields:

RR(a, b)φ(gR, gL)RR(a, b)† = φ(ra,bgR, gL) . (17)

Note, however, that ra,b does not preserve the indefinite scalar product (9)
unless we impose the constraint ĝ(0)=0:

(ra,bg1|ra,bg2) = (g1|g2) − lnaĝ∗1(0)ĝ2(0) .

Similarly we introduce the left Hamiltonian HL and the left generator of
dilations DL satisfying analogous commutation relations and the representa-
tion of the left A+(1,R).
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The Poincaré group generators are the Hamiltonian H = HR +HL, the
momentum P = HR −HL and the boost operator Λ = DR −DL (the only
Lorentz generator in 1+1 dimensions). The elements of the Poincaré group
are of the form

(a, bR), (a−1, bL) ∈ A+(1,R) ×A+(1,R) .

The scalar product (gR1|gR2)+(gL1|gL2) is invariant wrt the proper Poincaré
group.

4 Changing the Compensating Functions

It is important to discuss the dependence of the whole construction on the
choice of compensating functions σR and σL.

Let σ̃R and σ̃L be another pair of real functions satisfying (11). Set
ξR(x) := σ̃R(x)−σR(x), ξL(x) := σ̃L(x)−σL(x). Note that ξ̂R(0) = ξ̂L(0) = 0.
Define

U(ξR, ξL) = exp
(∫

dk
2πk

(

iχξ̂∗R(k)aR(k) + iχξ̂R(k)a†R(k)

+
1
2
χ2(ξ̂∗R(k)σ̂R(k) − ξ̂R(k)σ̂∗

R(k))+R→ L
))

. (18)

Using the formula

eABe−A = B + [A,B] +
1
2
[A, [A,B]] + · · · (19)

we have

UaR(k)U−1 = aR(k) − iχξ̂R(k) ,

Ua†R(k)U−1 = a†R(k) + iχξ̂∗R(k) ,

UaL(k)U−1 = aL(k) − iχξ̂L(k) ,

Ua†L(k)U−1 = a†L(k) + iχξ̂∗L(k) ,
UχU−1 = χ (20)

and

UpU−1 = p+
∫

dk
2πk

(

− ξ̂∗R(k)aR(k) − ξ̂R(k)a†R(k)

−iχξ̂R(k)σ̂∗
R(k) + iχξ̂∗R(k)σ̂R(k) +R→ L) . (21)

Using these relations we get for example

Uφσ(gR, gL)U−1 = φσ̃(gR, gL) ,

Ua†σRU
−1 = a†σ̃R ,

UHσRU
−1 = Hσ̃R , (22)

where we made explicit the dependence of φ and HR on σ and σ̃. Thus the
two constructions – with σ and with σ̃ – are unitarily equivalent.



Quantum Massless Field in 1+1 Dimensions 113

5 Hilbert Space

The Hilbert space of the system is the product of three spaces: H = HR ⊗
HL ⊗ H0. HR is the bosonic Fock space spanned by the creation operators
a†R(k) acting on the vacuum vector |ΩR〉. Analogously HL is the bosonic Fock
space spanned by the creation operators a†L(k) acting on the vacuum vector
|ΩL〉. With the third sector H0 we have essentially two options. If we take the
usual choice H0 = L2(R,dχ) then we can define the vacuum state (vacuum
expectation value) but there does not exist a vacuum vector. On the other
hand, we can take H0 = l2(R), i.e. the space with the scalar product

(f |g) =
∑

χ∈R

f∗(χ)g(χ) , (23)

which is a nonseparable space. It may sound as a nonstandard choice, it
has however the advantage of possessing a vacuum vector. The orthonormal
basis in the latter space consists of the Kronecker delta functions δχ for each
χ ∈ R. In the nonseparable case, the operator p, and therefore also φ(gR, gL),
cannot be defined. But there exist operators eisp, for s ∈ R, and also eiφ(gR,gL).
The commutation relations for these exponential operators follow from the
commutation relations for p and φ(gR, gL) described above.

In such a space the vacuum vector is given by

|Ω〉 = |ΩR ⊗ΩL ⊗ δ0〉 . (24)

This vector is invariant under the action of the Poincaré group and the action
of the gauge group U . We now prove that it is the unique vector with the
lowest energy. Note first that H is diagonal in χ ∈ R. Now for an arbitrary
Φ ∈ HR ⊗HL and χ1 ∈ R,

〈Φ⊗ δχ1 |H|Φ⊗ δχ1〉

=
∫ (〈

Φ|
(
a†R(k) + iχ1σ̂

∗
R(k)

)(
aR(k) − iχ1σ̂R(k)

)
Φ
〉 dk

2π
+R→ L

)

(25)

For any χ1, the expression (25) is nonnegative. If χ1 = 0, it has a unique
ground state |ΩR ⊗ΩL〉.

If χ1 �= 0, then (25) has no ground state. In fact, it is well known that a
ground state of a quadratic Hamiltonian is a coherent state, that is given by
a vector of the form

|βR, βL〉 = C exp
(∫

dk
2πk

(

βR(k)a†R(k) + βL(k)a†L(k)
))

|ΩR ⊗ΩL〉 (26)

and C is the normalizing constant

C = exp
(

−1
2

∫
dk
2πk

(
|βR(k)|2 + |βL(k)|2

)
)

. (27)
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If we set Φ = |βR, βL〉 in (25), then we obtain

〈Φ⊗ δχ1 |H|Φ⊗ δχ1〉 = |βR(k) + iχ1σR(k)|2 +R→ L .

that takes the minimum for

βR(k) = −iχ1σ̂R(k), βL(k) = −iχ1σ̂L(k) .

But for χ1 �= 0, |βR, βL〉 is not well defined as a vector in the Hilbert space.
To see this we can note that the normalizing constant C equals zero, because
then

χ2
1

∫
dk
2πk

(
|σ̂R(k)|2 + |σ̂L(k)|2

)
= ∞ .

(The fact that operators of the form (25) have no ground state is well known
in the literature, see eg. [7]).

In the nonseparable case H0 = l2(R), the expectation value

〈Ω| · |Ω〉 =: ω(·)

is a Poincaré-invariant state (positive linear functional) on the algebra of
observables. If we take the separable case H0 = L2(R,dχ), the state ω can
also be given a meaning, even though the vector Ω does not exist (since then
δ0 is not well defined).

Note that in the nonseparable case the state ω can act on an arbitrary
bounded operator on H. In the separable case we have to restrict ω to a
smaller algebra of operators, say, the algebra (or the C∗-algebra) spanned by
the operators of the form eiφ(gR,gL).

The expectation values of the exponentials of the 1+1-dimensional mass-
less field make sense and can be computed, both in the separable and non-
separable case:

ω (exp (iφ(gR, gL))) = exp
(

−1
2

∫
dk
2πk

(
|ĝR(k)|2 + |ĝL(k)|2

)
)

. (28)

Note that the integral in the exponent of (28) is the usual integral of a positive
function, and not its regularization as in (9). Therefore, if ĝ(0) �= 0, then this
integral equals +∞ and (28) equals zero.

The “two-point functions” of massless fields in 1+1 dimension, even
smeared out ones, are not well defined. Formally, they are introduced as

ω (φ(gR,1, gL,1)φ(gR,2, gL,2)) . (29)

If we use the nonseparable H0 = l2(R), then field operators φ(gR, gL) is not
well defined if ĝ(0) �= 0, and thus (29) is not defined. If we use the separable
Hilbert space H0 = L2(R,dχ), then φ(gR,1, gL,1)φ(gR,2, gL,2) are unbounded
operators and there is no reason why the state ω could act on them. Thus
(29) a priori does not make sense. In the usual free quantum field theory,
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if mass is positive or dimension more than 2, the expectation values the
exponentials depend on the smeared fields analytically, and by taking their
second derivative at (gR, gL) = (0, 0), one can introduce the 2-point function.
This is not the case for massless field in 1+1 dimension.

The above discussion shows that the problem of the non-positive def-
initeness of the two-point function, so extensively discussed in the litera-
ture [4, 9, 11–13] does not exist in our formalism.

It should be noted that massless fields in 1+1 dimension do not satisfy
the Wightman axioms [14]. In the separable case there is no vacuum vector
in the Hilbert space; in the nonseparable case there is a vacuum vector, but
there are no fields φ(f), only the “Weyl operators” eiφ(f).

6 Fields in Position Representation

So far in our discussion we found it convenient to use the momentum rep-
resentation. The position representation is, however, better suited for many
purposes.

Let W(t) denote the Fourier transform of the appropriately regularized
distribution θ(k)

2πk , that is

W(t) =
1
2π

lim
ε→0

(∫

k>ε

dk
k

eikt + ln(ε/µ)
)

(30)

=
1
2π

(

−γE − ln|µt| + iπ
2

sgn(t)
)

= W∗(−t)

where γE is the Euler’s constant. We can rewrite (9) as

(g1|g2) =
∫ ∞

−∞
dtdsg∗1(t)W(t− s)g2(s) (31)

To describe massless field in the position representation we introduce the
operators ψR(t) defined as

ψR(t) =
∫

dk
2πk

(
a†R(k)e−ikt + aR(k)eikt

)
,

and similarly for R → L. Note that it is allowed to smear ψR(t) and ψL(t)
only with test functions satisfying

∫

g(t)dt = 0 .

Note that W(t−s) and i
2 sgn(t−s) are the correlator and the commutator

functions for ψR(t):
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〈ΩR|ψR(t)ψR(s)ΩR〉 = W(t− s) ,

[ψR(t), ψR(s)] =
i
2
sgn(t− s) ,

and similarly for R→ L.
We introduce also

ψσR(t) =
∫

dk
2πk

a†σR(k)e−ikt +
∫

dk
2πk

aσR(k)eikt

= ψR(t) +
χ

2

∫

dsσR(s)sgn(t− s) ,

as well as R→ L.
It is perhaps useful to note that formally we can write

ψσR(t) = YRψR(t)Y †
R ,

where

YR := exp
(

iχ
∫

dtσR(t)ψR(t)
)

Note that YR is not a well defined operator, since σ̂R(0) �= 0.
Expressed in position representation the fields are given by

φ(gR, gL) =
∫

dt(gR(t) − ĝ(0)σR(t))ψσR(t) +R→ L+ ĝ(0)p . (32)

Since
∫

(gR(t) − ĝ(0)σR(t))dt = 0 the whole expression is well defined.
The commutator of two fields equals

[φ(f1), φ(f2)] = i
∫

dt1dt2dx1dx2f1(t1, x1)f2(t2, x2)

× (sgn(t1−t2+x1−x2)+sgn(t1−t2−x1+x2))

Note that the commutator of fields is causal – it vanishes if the supports of
f1 and f2 are spatially separated.

7 The SL(2, R) × SL(2, R) Covariance

Massless fields in 1+1 dimension satisfying the constraint (2) actually possess
much bigger symmetry than just the A+(1,R)×A+(1,R) symmetry, they are
covariant wrt the action of SL(2,R) × SL(2,R) (for right and left movers).

We will restrict ourselves to the action of SL(2,R) for, say, right movers.
First we consider it on the level of test functions.

We assume that test functions satisfy ĝ(0) = 0 and

g(t) = O(1/t2), |t| → ∞ . (33)
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Let

C =
[
a b
c d

]

∈ SL(2,R) (34)

(i.e. ad− bc = 1). We define the action of C on g by

(rCg)(t) = (−ct+ a)−2g

(
dt− b

−ct+ a

)

. (35)

Note that (35) preserves (33) and the scalar product

(rCg1|rCg2) = (g1|g2) ,

and is a representation, that is rC1rC2 = rC1C2 .
We second quantize rC by introducing the unitary operator RR(C) on

HR fixed uniquely by the conditions

RR(C)ΩR = ΩR ,

RR(C)ψR(t)RR(C)† = ψR

(
at+ b

ct+ d

)

. (36)

Note that

RR(C)
(∫

dtgR(t)ψR(t)
)

RR(C)† =
∫

dt(rCgR)(t)ψR(t). (37)

C �→ RR(C) is a representation in HR. Thus the operators RR(C) act natu-
rally on fields satisfying (2) (and hence also ĝR(0) = 0).

The fields without the constraint (2) are not covariant with respect to
SL(2,R) × SL(2,R), since this symmetry fails even at the classical level.
What remains is the A+(1,R) ×A+(1,R) symmetry described in (17). Note
that A+(1,R) can be viewed as a subgroup of SL(2,R):

A+(1,R) � (a, b) �→ C

[
a1/2 ba−1/2

0 a−1/2

]

∈ SL(2,R) . (38)

Clearly, on the restricted Hilbert space, under the identification (38), RR(a, b)
coincides with RR(C).

8 Normal Ordering

In the theory without the compensating sector the normal ordering can be
introduced in a standard way. In particular we have

: eiφ(gR,gL): = e
1
2 (gR|gR)+ 1

2 (gL|gL)eiφ(gR,gL) (39)

If the compensating sector is present then the theory does not act in
the Fock space any longer and we do not have an invariant particle number
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operator. It is however possible (and useful) to introduce the notion of the
normal ordering. For Weyl operators it is by definition given by (39). For
an arbitrary operator, we first decompose it in terms of Weyl operators, and
then we apply (39). Note that our definition has an invariant meaning wrt
the change of the compensating function: in the notation of (22) we have

U : eıφσ(gR,gL) : U−1 =: eıφσ̃(gR,gL) : .

Normal ordering is Poincaré invariant but suffers anomalies under remain-
ing A+(1,R) × A+(1,R) transformations (because the prefactor on the rhs
of (39) is invariant only under the Poincaré group). If the constraint (2) is
satisfied, then normal ordering is SL(2,R) × SL(2,R) covariant.

9 Classical Fields

In order to better understand massless quantum fields in 1+1 dimension it is
useful to study the underlying classical system, that is the wave equation in
1+1 dimension (4).

From the general representation of any classical solution

φ(t, x) = φR(t− x) + φL(t+ x) (40)

we get (in notation where f(±∞) stands for limt→±∞ f(t))

φ(t,∞) + φ(t,−∞) = φR(−∞) + φL(∞) + φR(∞) + φL(−∞)
= φ(∞, x) + φ(−∞, x) (41)

It will be convenient to denote by the space of Schwartz functions on R

by S and by ∂−1
0 S the space of functions whose derivatives belong to S and

satisfy the condition f(∞) = −f(−∞).
We are interested only in those solutions that restricted to lines of constant

time and lines of constant position belong to ∂−1
0 S (we will denote them as

F11). Neglecting a possible global constant shift we therefore assume that
they satisfy

φ(t,∞) + φ(t,−∞) = φ(∞, x) + φ(−∞, x) = 0 (42)

F11 is characterized by two numbers

lim
t→∞

φ(t, x) = − lim
t→−∞

φ(t, x) =: c0 ,

lim
x→∞

φ(t, x) = − lim
x→−∞

φ(t, x) =: c1 .

It is natural to distinguish the following subclasses of solutions to (4):

– F00 – solutions that restricted to lines of constant time and to lines of
constant position belong to S i.e. c0 = c1 = 0.
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– F10 – solutions that restricted to lines of constant time belong to S and
restricted to lines of constant position belong to ∂−1

0 S i.e. c1 = 0.
– F01 – solutions that restricted to lines of constant position belong to S

and restricted to lines of constant time belong to ∂−1
0 S i.e. c0 = 0.

There are several useful ways to parametrize elements of F11.

1. Initial conditions at t = 0:

f0(x) = φ(0, x) ,
f1(x) := ∂tφ(0, x) . (43)

Here, f0 ∈ ∂−1
0 S, f1 ∈ S. Note that

c0 =
1
2

∫

f1(x)dx, c1 = f0(∞) .

2. Derivatives of right/left movers:

gR(t) := −1
2
f ′0(−t) +

1
2
f1(−t) ,

gL(t) :=
1
2
f ′0(t) +

1
2
f1(t) .

Note that gR, gL ∈ S and they satisfy
∫

gR(t)dt = c0 − c1,

∫

gL(t)dt = c0 + c1 . (44)

3. Right/left movers:

φR(t) =
1
2

∫

gR(t− u)sgn(u)du

φL(t) =
1
2

∫

gL(t− u)sgn(u)du . (45)

Note that φR, φL ∈ ∂−1
0 S and they satisfy

φR(∞) = −φR(−∞) =
1
2
(c0 − c1) ,

φL(∞) = −φL(−∞) =
1
2
(c0 + c1) . (46)

We can go back from (gR, gL) to (f0, f1) by

f0(x) =
1
2

∫

gR(s− x)sgn(−s)ds+
1
2

∫

gR(s+ x)sgn(−s)ds ,

f1(x) = gR(−x) + gL(x) .

We can go back from (φR, φL) to (gR, gL) by



120 J. Dereziński and K.A. Meissner

gR = φ′R, gL = φ′L .

The unique solution of (4) with the initial conditions (43) equals

φ(t, x) = φR(t− x) + φL(t+ x) .

It will be sometimes denoted by φ(gR, gL).
In the literature, one can find all three parametrizations of solutions of

the wave equation. In particular, note that 3. is especially useful in the case
of F00, since then φR, φL ∈ S.

Note that in our paper we use 2. as the standard parametrization of solu-
tions of the wave equation. We are interested primarily in the space F10. Note
that F10 are the solutions to the wave equation with f0, f1 ∈ S. Equivalently,
for F10, the functions gR, gL satisfy

∫

gR(t)dt =
∫

gL(t)dt . (47)

We equip the space F11 with the Poisson bracket, which we write for all
three parametrizations:

{φ(gR1, gL1), φ(gR2, gL2)} =
∫

f01(x)f12(x)dx−
∫

f02(x)f11(x)dx (48)

=
∫

gR1(t)sgn(s− t)gR1(s)dtds+
∫

gL1(t)sgn(s− t)gL1(s)dtds

= Im(gR1|gR2) + Im(gL1|gL2) (49)

=
1
2

∫

∂tφR1(t)φR2(t)dt+
1
2

∫

∂tφL1(t)φL2(t)dt . (50)

Above, (f0i, f1i) and (φRi, φLi) correspond to (gRi, gLi). The formula in (48)
is the usual Poisson bracket for the space of solutions of relativistic 2nd order
equations (both wave and Klein-Gordon equations). (49) we have already seen
in (15).

The Poisson bracket in F11 is invariant wrt to the conformal group fixing
the infinities preserving separately the orientation of right and left movers,
that is Diff+(R) × Diff+(R). In the case of F00 we can extend this action to
the full orientation preserving conformal group, that is Diff+(S1)×Diff+(S1),
where we identify R together with the point at infinity with the unit circle.

10 Algebraic Approach

Among mathematical physicists, it is popular to use the formalism of C∗-
algebras to describe quantum systems. A description of massless fields in
1+1 dimension within this formalism is sketched in this section.
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To quantize the space F11, we consider formal expressions

eiφ(gR,gL) (51)

equipped with the relations

eiφ(gR1,gL1)eiφ(gR2,gL2) = eiIm(gR1|gR2)+iIm(gL1|gL2)eiφ(gR1+gR2,gL1+gL2);
(eiφ(gR,gL))† = eiφ(−gR,−gL) .

Linear combinations of (51) form a ∗-algebra, which we will denote Weyl (F11).
(If we want, we can take its completion in the natural norm and obtain a
C∗-algebra).

Note that the group Diff+(R)×Diff+(R) acts on Weyl (F11) by ∗-automor-
phisms. In other words, we have two actions

Diff+(R) � F �→ αR(F ) ∈ Aut(Weyl(F11)) ,
Diff+(R) � F �→ αL(F ) ∈ Aut(Weyl(F11)) ,

commuting with one another given by

αR(F )
(
eiφ(gR,gL)

)
= eiφ(rF gR,gL) ,

αL(F )
(
eiφ(gR,gL)

)
= eiφ(gR,rF gL) .

(52)

Above, Aut(Weyl(F11)) denotes the group of ∗-automorphisms of the algebra
Weyl(F)) and rF g(t) := 1

F ′(t)g(F
−1(t)).

Similarly Diff+(S1) × Diff+(S1) acts on Weyl(F00) by ∗-automorphisms.
The state ω given by (28) is invariant wrt A+(1,R) × A+(1,R) on

Weyl(F11) and wrt SL(2,R) × SL(2,R) on Weyl(F00).
In our paper we restricted ourselves to Weyl(F10).
The constructions presented in this paper give representations of

Weyl(F10) in a Hilbert space H and two commuting with one another strongly
continuous unitary representations

A+(1,R) � (a, b) �→ RR(a, b) ∈ U(H) ,
A+(1,R) � (a, b) �→ RL(a, b) ∈ U(H) .

implementing the automorphisms (52):

αR(a, b)(A) = RR(a, b)ARR(a, b)† , (53)
αL(a, b)(A) = RL(a, b)ARL(a, b)†. (54)

In the case of the algebra Weyl(F00) the same is true for SL(2,R).
In Sect. 5 we described two representations that satisfy the above men-

tioned conditions. The first, call it πI, represents Weyl(F10) in a separable
Hilbert space. Its drawback is the absence of a vacuum vector – a Poincaré in-
variant vector. The second, call it πII, represents Weyl(F10) in a non-separable
Hilbert space. It has an invariant vector |Ω〉.
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We can perform the GNS construction with ω. As a result we obtain the
representation πII together with the cyclic invariant vector Ω. The description
of this construction for massless fields in 1+1 dimension can be found in
[1], Sect. III D, and [2] Sect. 4. Note, however, that we have not seen the
representation πI in the literature, even though one can argue that it is in
some ways superior to πII.

Let us make a remark concerning the role played by the functions (σR, σL).
We note that F00 is a subspace of F10 of codimension 1. Fixing (σR, σL)
satisfying (11) allows us to identify F10 with F00 ⊕ R. Thus any (gR, gL)
satisfying (47) is decomposed into the direct sum of (gR−ĝ(0)σR, gL−ĝ(0)σL)
and ĝ(0)(σR, σL).

Of course, similar constructions can be performed for the algebra
Weyl(F11) or Weyl(F01). In the literature, algebras of observables based
on F01 appear in the context of “Doplicher-Haag-Roberts charged sectors”
in [5, 6, 15].

11 Vertex Operators

Finally, let us make some comments about the so-called vertex operators,
often used in string theory [8]. Let δy denote the delta function at y ∈ R.

Let tR1, . . . , tRn ∈ R correspond to insertions for right movers and
tL1, . . . , tLm ∈ R correspond to insertions for left movers. Suppose that the
complex numbers βR1, . . . , βRn, and βL1, . . . , βLm denote the corresponding
insertion amplitudes and satisfy

∑

βRi =
∑

βLj .

Then the corresponding vertex operator is formally defined as

V (tR1, βR1; . . . ; tRn, βRn; tL1, βL1; . . . ; tLm, βLm) = : exp (iφ(gR, gL)) : ,
(55)

where

gR = βR1δtR1 + · · · + βRnδtRn
, (56)

gL = βL1δtL1 + · · · + βLmδtLm
. (57)

Strictly speaking, the rhs of (55) does not make sense as an operator in
the Hilbert space. In fact, in order that eiφ(gR,gL) be a well defined operator,
we need that

∫
dk
2πk

|ĝR(k) − ĝ(0)σ̂R(k)|2 +
∫

dk
2πk

|ĝL(k) − ĝ(0)σ̂L(k)|2 <∞. (58)

This is not satisfied if gR or gL are as in (56) and (57).
Nevertheless, proceeding formally, we can deduce various identities. For

instance, we have the Poincaré covariance:
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RR(a, bR)RL(a−1, bL)
× V (tR1, βR1; . . . ; tRn, βRn; tL1, βL1; . . . )

× R†
L(a−1, bL)R†

R(a, bR)
= V (atR1 + bL, βR1; . . . ; a−1tRn + bR, βRn; a−1tL1 + bL, βL1; . . . ) .

If in addition
∑
βRi = 0, then a similar identity is true for SL(2,R) ×

SL(2,R).
Clearly, we have

ω (V (tR1, βR1; . . . ; tRn, βRn; tL1, βL1; . . . ; tLm, βLm))

=

{
1,

∑
βRi = 0;

0,
∑
βRi �= 0.

. (59)

The following identities are often used in string theory for the calculation
of on-shell amplitudes. Suppose that tR1, . . . , tRn are distinct, and the same
is true for tL1, . . . , tLn. Then, using (30), we obtain

V (tR1, βR1; tL1, βL1) · · ·V (tRn, βRn; tLn, βLn)

= e

(

∑

i<j

W(tRi−tRj))βRiβRj+W(tLi−tLj)βLiβLj

)

×V (tR1, βR1; . . . ; tRn, βRn; tL1, βL1; . . . ; tLn, βLn)

=
∏

i<j

( tRi − tRj
iµeγE

)−βRiβRj/2π( tLi − tLj
iµeγE

)−βLiβLj/2π

×V (tR1, βR1; . . . ; tRn, βRn; tL1, βL1; . . . ; tLn, βLn) .

12 Fermions

Massless fermions in 1+1 dimension do not pose such problems as bosons.

The fields are spinors, they will be written as
[
λR(t, x)
λL(t, x)

]

. They satisfy the

Dirac equation [
∂t − ∂x 0

0 ∂t + ∂x

] [
λR(t, x)
λL(t, x)

]

= 0 .

We will also use the fields smeared with real functions f , where the con-
dition (2) is not needed any more:

[
λR(f)
λL(f)

]

=
∫ [

λR(t, x)
λL(t, x)

]

f(t, x)dtdx .
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Because of the Dirac equation, they can be written as

λR(f) = λR(gR), λL(f) = λL(gL) ,

where gR and gL where introduced when we discussed bosons.
For k > 0, we introduce fermionic operators (for right and left sectors)

bR(k) and bL(k) satisfying the anticommutation relations

{bR(k), b†R(k′)} = 2πδ(k − k′) ,

{bL(k), b†L(k′)} = 2πδ(k − k′), (60)

with all other anticommutators vanishing. Now

λR(gR) =
∫

dk
2π

(

g∗R(k)bR(k) + gR(k)b†R(k)
)

λL(gL) =
∫

dk
2π

(

g∗L(k)bL(k) + gL(k)b†L(k)
)

(61)

The anticommutation relations for the smeared fields read

{λ†R(gR1), λR(gR2)} =
∫

g∗R1(t)gR2(t)dt =
∫

dk
2π
ĝ∗R1(k)ĝR2(k) (62)

and similarly for the left sector. Note the difference of the fermionic scalar
product (62) and the bosonic one (·|·).

In terms of space-time smearing functions these anticommutation rela-
tions read

{λ†R(f1), λR(fR)} = 2
∫

dtdxδ(t+ x)f1(t, x)f2(t, x) ,

{λ†L(f1), λR(fL)} = 2
∫

dtdxδ(t− x)f1(t, x)f2(t, x) .

Fermionic fields are covariant with respect to the group A+(1,R) ×
A+(1,R). We will restrict ourselves to discussing the covariance for say, right
movers. The right Hamiltonian and the right dilation generator are

H f
R =

∫
dk
2π
kb†R(k)bR(k)

Df
R =

i
2

∫
dk
2π

(

b†R(k)k∂kbR(k) −
(
k∂kb

†
R(k)

)
bR(k)

)

.

We have the usual commutation relations for H f
R and Df

R and their action
on the fields is anomaly-free:

[
H f
R, λR(gR)

]
= −iλ(∂tgR) ,

[
Df
R, λR(gR)

]
= iλ

(
(t∂t + 1/2)gR

)
.
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We have also the covariance with respect to the conformal group SL(2,R)×
SL(2,R). We need to assume that test functions satisfy

g(t) = O(1/t), |t| → ∞ . (63)

We define the action of

C =
[
a b
c d

]

∈ SL(2,R) (64)

on g by

(rfCg)(t) = (−ct+ a)−1g

(
dt− b

−ct+ a

)

. (65)

Note that (65) has a different power than (35). It is a unitary representation
for the scalar product (·|·)f .

We second quantize rfC on the fermionic Fock space by introducing the
unitary operator Rf

R(C) fixed uniquely by the conditions

Rf
R(C)ΩR = ΩR ,

Rf
R(C)λR(t)Rf

R(C)† = (ct+ d)−1λR

(
at+ b

ct+ d

)

. (66)

Note that C �→ Rf
R(C) is a unitary representation and it acts naturally on

fields:

Rf
R(C)λR(gR)Rf

R(C)† = λR(rfCgR), (67)

13 Supersymmetry

In this section we consider both bosons and fermions. Thus our Hilbert space
is the tensor product of the bosonic and fermionic part. We assume that
the bosonic and fermionic operators commute with one another. Clearly, our
theory is A+(1,R) × A+(1,R) covariant. In fact, the right Hamiltonian and
the generator of dilations for the combined theory are equal to HR+H f

R and
DR +Df

R.
In the case of the theory with the constraint (2), we have also the

SL(2,R) × SL(2,R). covariance.
On top of that, the combined theory is supersymmetric. The supersym-

metry generators QR, QL are defined as

QR =
∫

dk
2π

(

a†σR(k)bR(k) + aσR(k)b†R(k)
)

,

QL =
∫

dk
2π

(

a†σL(k)bL(k) + aσL(k)b†L(k)
)

. (68)
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They satisfy the basic supersymmetry algebra relations without the cen-
tral charge

{QR, QR} = 2(HR +H f
R) ,

{QL, QL} = 2(HL +H f
L) ,

{QR, QL} = 0. (69)

The action of the supersymmetric charge transforms bosons into fermions
and vice versa:

[QR, φ(gR, gL)] = λR(gR) ,
[QL, φ(gR, gL)] = λL(gL) ,

[QR, λR(gR)] = φ(∂tgR, 0) ,
[QL, λL(gL)] = φ(0, ∂tgL) .

The pair of operators
[
QR
QL

]

behaves like a spinor under the Poincaré

group. Even more is true: we have the covariance under the group A+(1,R)×
A+(1,R), which for the right movers can be expressed in terms of the follow-
ing commutation relations:

[HR, QR] = 0 , [DR, QR] = − i
2
QR .
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1 Stability of a Single-Phase Equilibrium

We expect equilibrium states of very large systems to have a property of
dynamical stability, called the property of return to equilibrium. This means
that if the system is initially in a state that differs only a bit (say locally in
space) from an equilibrium state, then it approaches that equilibrium state in
the large time limit. One may view this irreversible process as a consequence
of the dispersiveness of the dynamics, and the infinite size of the system:
the local spatial disturbance of the equilibrium state, defining the initial
state, propagates out of any bounded region if one waits long enough. Strictly
speaking we expect return to equilibrium only for spatially infinitely extended
systems. If one desires to observe localized events of a large, but finite systems
(a laboratory) then the above description is a good approximation on an
intermediate time scale (time should be large so the system can settle towards
the equilibrium state, but not too large as to avoid recurrences in the finite
system).

A quantum system for which the property of return to equilibrium is easy
to examine is the free Bose gas. If the gas has a Bose-Einstein condensate then
the system has many coexisting phases (many equilibrium states at the same
temperature). We will explain what the property of return to equilibrium
translates into for systems with multiple (multi-phase) equilibria.

If a free Bose gas, modeling an “environment” or a “heat bath”, is coupled
to a finite system, e.g. to a spin, then it is not so easy any more to show
the property of return to equilibrium. This question has been examined, for
single-phase equilibria, in a variety of recent publications, [3,6,10,14,15,27].
The case when the gas is in a condensate state is investigated in [18]. We
refer to [11] for a discussion of the above mentioned validity of the infinite
volume approximation of finite systems for intermediate times.

1.1 The Free Bose Gas

Let Λ = [−L/2, L/2]3 ⊂ R
3 be a box in physical space. Pure states of the

bose gas localized inside Λ are represented by vectors in the bosonic Fock

M. Merkli: Stability of Multi-Phase Equilibria, Lect. Notes Phys. 690, 129–148 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006



130 M. Merkli

space

FΛ =
∞⊕

n=0

P+L
2(Λ,d3x)⊗n , (1)

where P+ projects onto functions which are symmetric under permutations
of arguments. In order to describe an infinitely extended Bose gas we want
to increase the volume Λ ↑ R

3. One may replace Λ by R
3 in expression

(1) thereby getting a Hilbert space F whose vectors represent states (where
particles are not constrained to any bounded volume). If the system is in the
state ψ = {ψn}∞n=0 (a normalized vector in F) then the probability of finding
n particles is given by pn = ‖ψn‖2

L2(R3n,d3nx). Since these probabilities must
add up to one we have pn → 0, as n → ∞. This indicates that if we would
like to describe an infinitely extended Bose gas with a fixed (average) density,
say one particle per unit volume, then Fock space cannot be the right state
space.

In order to describe the infinite system we should take the infinite volume
limit of the expectation functional (“averages”) defined by a vector, or a
density matrix on FΛ. To this end it is useful to introduce the Weyl algebra
WΛ = W(L2(Λ,d3x)). This is the C∗algebra generated by the unitary Weyl
operators,

W (f) = eiϕ(f) , (2)

f ∈ L2(Λ,d3x), where ϕ(f) = 1√
2
(a∗(f) + a(f)), and a∗(f), a(f) are the

usual creation- and annihilation operators on FΛ. The Weyl algebra provides
us with a rich class of “observables”. Namely, W(L2(Λ,d3x)) is dense (in the
weak operator topology) in B(FΛ), the set of all bounded operators on FΛ.
(This is a consequence of the fact that the Weyl algebra acts irreducibly on
Fock space.) The Weyl operators satisfy the Canonical Commutation Rela-
tions (CCR)

W (f)W (g) = e−
i
2 Im〈f,g〉W (f + g) . (3)

A state of the system is given by a positive linear functional ωΛ : WΛ → C,
normalized as ωΛ(1l) = 1. In view of (3) it is not very surprising that any state
on the Weyl algebra is entirely determined by its value on the generators of
the algebra, i.e., by the (nonlinear) expectation functional

L2(Λ,d3x) � f �→ EΛ(f) := ωΛ(W (f)) . (4)

The converse is true too: if EΛ : L2(Λ,d3x) → C is a functional satisfying
certain compatibility conditions, then it defines uniquely a state ωΛ on WΛ,
via ωΛ(W (f)) = EΛ(f).

The dynamics of Weyl operators is given by

t �→ αΛt (W (f)) = W (e−itHΛf) , (5)

where the one particle Hamiltonian HΛ is −∆ (Laplace operator acting on
L2(Λ,d3x) with some classical boundary condition, or a function of this op-
erator).
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The procedure of finding (defining!) the infinitely extended system is now
reduced to finding the limiting expectation functional E = limΛ↑R3 EΛ. We
are interested in constructing equilibrium states (w.r.t. the dynamics (5)).
Those are special states, characterized by an inverse temperature β and a
mean density ρ, which satisfy the so-called KMS condition, [4]. Formally, a
state ω on a C∗algebra A is a (β, αt)-KMS state (where αt is a ∗automorphism
group of A, and 0 < β <∞) if the KMS condition is satisfied,

ω(Aαt(B)) = ω(αt−iβ(B)A) , (6)

for suitable observables A,B ∈ A.
It is convenient and standard to formulate the theory in Fourier space,

where the periodic Laplacian is diagonalized. In the infinite volume limit, the
test functions (wave functions of a single particle) f in (2)–(5) are elements of
L2(R3,d3k). In the following we place ourselves in this setting (all results can
be expressed in direct space at the expense of a more cumbersome notation).

The Araki–Woods Construction, [2]

Let R
3 � k �→ ρ(k) > 0 be a given function (the “continuous momentum-

density distribution”), and ρ0 ≥ 0 a fixed number (the “condensate density”).
Araki and Woods obtain a state of the Bose gas by the following procedure.
Put L3ρ0 particles in the ground state of the one particle Hamiltonian HΛ,
and a discrete distribution of particles in excited states. Then take the limit
L→ ∞ while keeping ρ0 fixed and letting the discrete distribution of excited
states tend to ρ(k). In this way one obtains the generating functional

EAW
ρ,ρ0(f) = exp

[

−1
4
〈f,
(
1 + 2(2π)3ρ

)
f〉
]

J0

(√

2(2π)3ρ0|f(0)|
)

, (7)

where J0(
√
α2 + β2) =

∫ π

−π
dθ
2π e

−i(α cos θ+β sin θ), α, β ∈ R (Bessel function).
As mentioned above, EAW

ρ,ρ0 defines a state of the infinitely extended Bose gas.
The physical interpretation is that this state describes a free Bose gas where a
sea of particles, all being in the same state (corresponding to the ground state
of the finite-volume Hamiltonian), form a condensate with density ρ0, which
is immersed in a gas of particles where ρ(k) particles per unit volume have
momentum in the infinitesimal volume d3k around k ∈ R

3. If the Hamiltonian
in the finite box is taken with periodic boundary conditions the condensate
is homogeneous in space (the ground state wave function is a constant in
position space). The resulting state is an equilibrium state (satisfies the KMS
condition (6) for A,B Weyl operators with test functions f ∈ L2(R2,d3k) and
w.r.t. the dynamics t �→W (e−itωf)) if the momentum density distribution is
given by

ρ(k) = (2π)−3 1
eβω(k) − 1

, (8)
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corresponding to Planck’s law of black body radiation, and the condensate
density ρ0 ≥ 0 is arbitrary. We consider dispersion relations ω(k) = |k|2 or
ω(k) = |k| (non-relativistic Bosons or massless relativistic ones).

The Grand-Canonical Construction, [16]

The density matrix (acting on Fock space FΛ) for the local grand-canonical
equilibrium system is

σΛβ,zΛ
=

e−β(HΛ−µΛNΛ)

Tr e−β(HΛ−µΛNΛ)
, (9)

where µΛ ∈ R is the chemical potential, zΛ = eβµΛ is the fugacity, and NΛ is
the number operator. For a fixed inverse temperature 0 < β < ∞ define the
critical density by

ρcrit(β) = (2π)−3

∫
d3k

eβω(k) − 1
, (10)

and denote by ρ ≥ 0 the total (mean) density of the gas, whose value we are
at liberty to choose,

ρ = Tr
(

σΛβ,zΛ

NΛ
L3

)

. (11)

For each fixed L, this determines the value of zΛ (as a function of L, ρ and β).
One then performs the thermodynamic limit of the expectation functional,

EGC
β,ρ (f) = lim

L→∞
EΛβ,zΛ

(f) := lim
L→∞

Tr
(
σΛβ,zW (f)

)
, (12)

where the limit L → ∞ is taken under the constraint (11). The limiting
generating functional is

EGC
β,ρ (f) =

{

e−
1
4‖f‖

2
exp

[

− 1
2 〈f,

z∞
eβω−z∞ f〉

]

, ρ ≤ ρcrit(β)
Econ
β,ρ (f), ρ ≥ ρcrit(β)

(13)

where, with ρ0 := ρ− ρcrit(β) ≥ 0,

Econ
β,ρ (f) = exp

[

−1
4
〈f, (1 + 2(2π)3ρ)f〉

]

exp
{
−4π3ρ0|f(0)|2

}
, (14)

and ρ = ρ(k) is given in (8). For subcritical density, ρ ≤ ρcrit(β), the number
z∞ ∈ [0, 1] is determined by the equation

ρ = (2π)−3

∫
z∞

eβω(k) − z∞
d3k . (15)

In the supercritical case, ρ ≥ ρcrit(β), we have z∞ = 1 which corresponds to
a vanishing chemical potential, µ∞ = 0.
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The Canonical Construction, [5]

The density matrix of the canonical local Gibbs state is

µΛβ,ρ =
e−βHΛPρL3

Tr e−βHΛPρL3
, (16)

and PρL3 is the projection onto the subspace of Fock space with ρL3 particles
(if ρL3 is not an integer take a convex combination of canonical states with
integer values ρ1L

3 and ρ2L
3 extrapolating ρL3). The limiting generating

functional is given by

EC
β,ρ(f) =

{

e−
1
4‖f‖

2
exp

[

− 1
2 〈f,

z∞
eβω−z∞ f〉

]

, ρ ≤ ρcrit(β)
EAW
ρ,ρ0(f), ρ ≥ ρcrit(β) .

(17)

It coincides with the grand-canonical generating functional in the subcritical
case, and with the Araki-Woods generating functional with ρ given by (8)
and ρ0 = ρ− ρcrit in the supercritical case.

The grand-canonical and the canonical generating functionals are linked,
[5], in the supercritical case, ρ0 > 0, by the Laplace transform

Econ
β,ρ (f) =

∫ ∞

0

K(r; ρ)EC
β,r(f)dr , (18)

where the Kac density K(r; ρ) is

K(r; ρ) =
{

e−(r−ρcrit)/ρ0/ρ0, r > ρcrit

0, r ≤ ρcrit .
(19)

This means that the grand-canonical equilibrium state with supercritical
mean density ρ is a superposition of canonical equilibrium states with su-
percritical densities r, weighted with the Kac density K(r, ρ).

From now on, we focus on the infinite volume equilibrium state ωβ,ρ deter-
mined by the thermodynamic limit of the canonical expectation functional,
(17). (All that follows can be carried out for the grand-canonical expectation
functional, (13), see [18], but is notationally less cumbersome in the canonical
case.)

1.2 Spontaneous Symmetry Breaking
and Multi-Phase Equilibrium

We denote by EAW
ρ (f) the Araki-Woods expectation functional (7) at critical

density, where ρ(k) is given by (8), and ρ0 = 0. The corresponding equilibrium
state is denoted by ωβ (it is a state on W ≡ W(D), where



134 M. Merkli

D ⊂ L2(R3,d3k) (20)

consists of functions s.t. the right side of (7) is defined).
With the expansion of the Bessel function J0 given after (7) we can write

the canonical expectation functional, for ρ ≥ ρcrit(β), as a superposition

EC
β,ρ(f) =

∫

S1

dθ
2π

e−iΦ(f,θ)EAW
ρ (f) , (21)

where the real phase Φ is given by

Φ(f, θ) = (2π)3/2
√

2ρ0

(
(Ref(0)) cos θ + (Imf(0)) sin θ

)
. (22)

Correspondingly, we define the states ωθβ on W ≡ W(D) by

ωθβ(W (f)) = e−iΦ(f,θ)ωβ(W (f)) . (23)

The point of this exercise is to notice that for each θ, (23) defines a β-KMS
state w.r.t. the dynamics αt(W (f)) = W (e−itωf). Thus the supercritical
equilibrium state ωβ,ρ corresponding to (21) is a uniform superposition of the
equilibrium states ωθβ , θ ∈ S1. Of course, we can now take any probability
measure dµ on S1 and define a (β, αt)-KMS state on W by

ωµ(·) =
∫

S1
dµ(θ)ωθβ(·) . (24)

One easily shows that the states (23) are factor states, so they are ex-
tremal. We also point out that they are not invariant under the gauge group
σs(W (f)) = W (eisf), s ∈ R, which is a symmetry group of the dynamics
αt (meaning that αt ◦ σs = σs ◦ αt, s, t ∈ R). The existence of equilibrium
states which have “less symmetry” than the dynamics is called spontaneous
symmetry breaking.

We close this paragraph with some observations on space mixing proper-
ties. Given a vector a ∈ R

3 we define τa(W (f)) := W (fa), where fa(x) :=
f(x− a) is the (direct-space) translate of f by a. τa defines a (three parame-
ter) group of automorphisms on W. A state ω on W is called strongly mixing
w.r.t. space translations if lim|a|→∞ ω(W (f)τa(W (g))) = ω(W (f))ω(W (g)),
for any f, g ∈ D. This means that if two observables (W (f) and W (g)) are
spatially separated far from each other then the expectation of the product
of the observables is close to the product of the expectation values (inde-
pendence of random variables). Intuitively, this means that the state ω has
a certain property of locality in space: what happens far out in space does
not influence events taking place, say, around the origin. For the equilibrium
state ωβ,ρ determined by (17), it is easy to show that

lim
|a|→∞

ωβ,ρ
(
W (f)τa(W (g))

)

= ωβ,ρ(W (f))ωβ,ρ(W (g))

{
1, ρ ≤ ρcrit(β)
exp

[

−8π3ρ0 Re(f(0)g(0))
]

, ρ ≥ ρcrit(β) .
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Consequently, this equilibrium state is strongly mixing w.r.t. space transla-
tions if and only if ρ0 = 0, i.e., if and only if there is no condensation. In
presence of a condensate, the system exhibits long range correlations (what
happens far out does influence what happens say at the origin). On the other
hand, it is easily verified that each state ωθβ is strongly mixing.

1.3 Return to Equilibrium in Absence of a Condensate

Consider the equilibrium state ωβ,ρ defined by the expectation functional
(17), in the regime ρ ≤ ρcrit(β). We say that ωβ,ρ has the property of return
to equilibrium iff

lim
t→∞

ωβ,ρ(B∗αt(A)B) = ωβ,ρ(B∗B)ωβ,ρ(A) , (25)

for all A,B ∈ W. (This means that all states which are normal w.r.t. ωβ,ρ
converge to ωβ,ρ in the long time limit.) Let us show that

lim
t→∞

ωβ,ρ
(
W (g)αt(W (f))W (h)

)
= ωβ,ρ

(
W (g)W (h)

)
ωβ,ρ(W (f)) , (26)

for all f, g, h ∈ D. (26) implies (25). Using the CCR, (3), we obtain

W (g)W (eiωtf)W (h) = e−
i
2 Im[〈g,eiωtf〉+〈g+eiωtf,h〉]W (eiωtf + g + h) . (27)

Using the Riemann-Lebesgue lemma, the first factor on the r.h.s. of (27) is
seen to have the limit e−

i
2 Im〈g,h〉, as t→ ∞. From (17) we obtain

ωβ,ρ(W (eiωtf + g + h))

= e−
1
4‖e

iωtf+g+h‖2
exp

[

−1
2

∥
∥
∥
∥

√
z∞

eβω(k) − z∞

(
eiωtf + g + h

)
∥
∥
∥
∥

2
]

, (28)

and another application of the Riemann-Lebesgue lemma shows that the
r.h.s. of (28) tends to ωβ,ρ(W (f))ωβ,ρ(W (g + h)), as t→ ∞. That’s it as for
return to equilibrium for ρ ≤ ρcrit(β)!

1.4 Return to Equilibrium in Presence of a Condensate

Of course one can do the calculation of the previous section in the case
ρ > ρcrit by using explicitly (17) again. One will then notice that due to the
presence of the Bessel function J0 in (7), expressions do not split so nicely
into products any longer. A better way of doing things is to realize that
the extremal states (23) do have the property of return to equilibrium, as
is obvious from the calculation in the previous paragraph and the fact that
Φ(eiωtf, θ) = Φ(f, θ). This leads immediately to the following expression for
the asymptotic state of an initial condition which is a local perturbation of
(normal w.r.t.) a general mixture, (24), of the extremal equilibria:
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lim
t→∞

ωµ(B∗αt(A)B) =
∫

S1
dµ(θ)ωθβ(B

∗B)ωθβ(A) . (29)

Hence the time asymptotic state of the system depends on the state it was
initially in. We may interpret this “memory effect” as a consequence of the
fact that the system has long-range correlations. Although the perturbation
propagates away from any bounded set (the dynamics is dispersive), correla-
tions survive in the limit of large times. If B is such that ωθβ(B

∗B) = 1 for
all θ in the support of dµ (e.g. if B is unitary) then the asymptotic state is
just ωµ again. In general however, the limit state is a different mixture of the
extremal equilibria, with a distribution given by the measure

dµB(θ) = ωθβ(B
∗B)dµ(θ) , (30)

another probability measure, which is absolutely continuous w.r.t. dµ(θ). In
particular, the time asymptotic state (29) is normal w.r.t. ωµ.

1.5 Spectral Approach

Take a heat reservoir and bring it into contact with a small system, say an
N -level system (e.g. a spin, or an idealized atom in a cavity). The interaction
gives rise to emission and absorption processes, where particles in the reser-
voir (Bosons) are swallowed by the small system, which thereby increases its
energy, or where the small system releases a particle by lowering its energy.

It is a well know fact that the coupled system has an equilibrium state
(Araki’s structural stability of equilibria, see also [7]). We want to show return
to equilibrium for the coupled system.

Let us outline here a strategy for doing so, introduced in [14, 15], and
further developed in [3, 6, 9, 10,17,18].

Assume ω is a (β, αt)-equilibrium state on a C∗algebra A, where αt is a
dynamics on A (a group of ∗automorphisms). The GNS construction gives a
Hilbert space representation (H, π,Ω) of the pair (A, ω),

ω(A) = 〈Ω, π(A)Ω〉 , (31)

where H is the representation Hilbert space, Ω ∈ H, and π maps A into
bounded operators on H. There is a unique selfadjoint operator L on H
satisfying

π(αt(A)) = eitLπ(A)e−itL, LΩ = 0 , (32)

for all A ∈ A, t ∈ R. L is called the (standard) Liouvillian. We have

ω(B∗αt(A)B) = ω(α−iβ(B)B∗αt(A))
= 〈Ω, π (α−iβ(B)B∗) eitLπ(A)Ω〉 . (33)

We use here that ω satisfies the KMS condition (6), and (31), (32). It becomes
now apparent how we can link the long-time behaviour of (33) to the spectral
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properties of L. If the kernel of L has dimension one (its dimension is at least
one due to (32)), and if L has purely absolutely continuous spectrum on
R\{0}, then the r.h.s. of (33) converges to

〈Ω, π (α−iβ(B)B∗)Ω〉〈Ω, π(A)Ω〉 = ω(α−iβ(B)B∗)ω(A) , (34)

as t → ∞. The first term on the r.h.s. is just ω(B∗B) (use again the KMS
condition (6) with t = 0). The combination of (34) and (33) shows that

lim
t→∞

ω(B∗αt(A)B) = ω(B∗B)ω(A) , (35)

provided KerL = CΩ and the spectrum of L on R\{0} is purely absolutely
continuous. This shows return to equilibrium (c.f. (25))!

A more modest version is return to equilibrium in the ergodic average
sense, where the limit in (35) is understood in the ergodic mean,

lim
T→∞

1
T

∫ T

0

ω(B∗αt(A)B)dt = ω(B∗B)ω(A) . (36)

Relation (36) follows from (33) and the von Neumann ergodic theorem, pro-
vided KerL = CΩ.

2 Stability of Multi-Phase Equilibria

The discussion of Sect. 1.4 motivates the following more abstract
Definitions. 1. Let ω be a state on a C∗algebra A, invariant w.r.t. a

∗automorphism group αt of A. We say that ω is asymptotically stable (w.r.t.
αt) if

lim
t→∞

ω(B∗αt(A)B) = ω(B∗B)ω(A) , (37)

for any A,B ∈ A.
2. Let ωξ, ξ ∈ X (a measurable space), be a measurable family of states

on a C∗algebra A (in the sense that ξ �→ ωξ(A) is measurable for all A ∈ A)
and let αt be a ∗automorphism group of A. Given any probability measure
µ on X we define the state

ωµ =
∫

X

dµ(ξ) ωξ . (38)

We say that the family ωξ is asymptotically stable (w.r.t. αt) if, for any
µ,A,B, we have

lim
t→∞

ωµ(B∗αt(A)B) =
∫

X

dµ(ξ) ωξ(B∗B) ωξ(A) . (39)

3. If ω in 1. is a (β, αt)-KMS state then we say ω has the property of
Return to Equilibrium. Similarly, if the ωξ in 2. are (β, αt)-KMS states (then
so is ωµ) we say the family ωξ has the property of Return to Equilibrium.
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In the above definitions the dynamics of the system is given by a
∗automorphism group αt of a C∗algebra A. While this description applies to
free Fermionic or Bosonic heat reservoirs it does not in case a Bosonic reser-
voir is coupled to a small system. The problem is that one does not know how
to define the dynamics for the coupled system as a ∗automorphism group of
the C∗algebra of observables (unless the algebra is modified, see [9]). One cir-
cumvents this issue by defining the interacting dynamics as a ∗automorphism
group of the von Neumann algebra associated with a reference state (e.g. the
uncoupled equilibrium state). We shall therefore adapt the above definitions
to a setting where the dynamics is not defined on the level of the C∗algebra of
observables, but is rather expressed as a (“Schrödinger”) dynamics of states.

Definitions. 1’. Let ω be a state on a C∗algebra A and denote by
(Hω, πω, Ωω) its GNS representation, ω(A) = 〈Ωω, πω(A)Ωω〉. Suppose σt is
a ∗automorphism group of the von Neumann algebra πω(A)′′. We say that ω
is asymptotically stable (w.r.t. σt) if

lim
t→∞

〈Ωω, πω(B∗)σt(πω(A))πω(B)Ωω〉 = ω(B∗B)ω(A) , (40)

for all A,B ∈ A.
2’. Let ωξ, ξ ∈ X (a measurable space), be a measurable family of states

on a C∗algebra A and denote their GNS representations by (Hξ, πξ, Ωξ).
Suppose that, for each ξ, σξt is a ∗automorphism group of the von Neumann
algebra πξ(A)′′, s.t. ξ �→ 〈σξt (A)〉BΩξ

is measurable, for all A,B ∈ πξ(A)′′,
t ∈ R. (〈A〉Ω = 〈Ω,AΩ〉.) We say that the family ωξ is asymptotically stable
(w.r.t. σξt ) if, for any A,B ∈ A, we have

lim
t→∞

∫

X

dµ(ξ)〈σξt (πξ(A))〉πξ(B)Ωξ
=
∫

X

dµ(ξ) ωξ(B∗B) ωξ(A) , (41)

where µ is an arbitrary probability measure on X.
3’. If ω in 1’. is a (β, σt)-KMS state of πω(A)′′ then we say ω has the

property of Return to Equilibrium. Similarly, if the ωξ in 2’. are (β, σξt )-KMS
states of πξ(A)′′ we say the family ωξ has the property of Return to Equilib-
rium.

3 Quantum Tweezers

We investigate a Bose gas in a state with Bose-Einstein condensate coupled
to a small system.

Description of Model and Stability Result

The small system with which the Bose gas with condensate interacts can trap
finitely many Bosons – we call it therefore a quantum dot. One can imagine
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the use of such a trap to remove single (uncharged) particles from a reservoir,
hence the name quantum tweezers (see also [8] and the references therein).

The pure states of the small system are given by normalized vectors
in C

d. We interpret [1, 0, . . . , 0] as the ground state (or “vacuum state”),
[0, 1, 0, . . . , 0] as the first excited state, e.t.c. The Hamiltonian is given by the
diagonal matrix

H1 = diag(0, 1, 2, . . . , d− 1) . (42)

Our method applies to any selfadjoint diagonal matrix with non-degenerate
spectrum. We introduce the raising and lowering operators, G+ and G−,

G+ =









0 0 · · · 0

1 0
. . .

...
...

. . . . . . 0
0 · · · 1 0









, G− = (G+)∗ , (43)

(G+ has ones on its subdiagonal) which satisfy H1G± = G±(H1 ± 1). The
action of G+ (G−) increases (decreases) the excitation level of the quantum
dot by one. The dynamics of an observable A ∈ B(Cd) (bounded operators
on C

d) is given by

αt1(A) = eitH1Ae−itH1 , t ∈ R . (44)

The observable algebra of the combined system is the C∗-algebra

A = B(Cd) ⊗ W(D) , (45)

where D ⊂ L2(R3,d3k) (Fourier space) consists of f ∈ L2(R3, (1 + ρ)d3k)
which are continuous at zero. The non-interacting dynamics is

αt0 = αt1 ⊗ αt2 , (46)

where
αt2(W (f)) = W (eitωf) , (47)

ω(k) = |k|2 or |k|, is the free field dynamics. Denote by ω1,β the Gibbs state
of the quantum dot, and let ωθβ be given as in (23). Then

ωθβ,0 := ω1,β ⊗ ωθβ (48)

is a (β, αt0)-KMS state. We can form different equilibrium states by mix-
ing such states according to any probability measure µ on S1. Let us now
introduce an interaction operator, formally given by the expression

λ
(
G+ ⊗ a(g) +G− ⊗ a∗(g)

)
, (49)

where λ ∈ R is a coupling constant, the G± are the raising and lowering
operators, (43), and a#(g) are creation (# = ∗) and annihilation operators
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of the heat bath, smeared out with a function g ∈ D, called a form factor.
The operator G+ ⊗ a(g) destroys a Boson and traps it in the quantum dot
(whose excitation level is thereby increased by one) and similarly, the effect of
G−⊗a∗(g) is to release a Boson from the quantum dot. The total number of
particles, measured by the “observable” H1 +

∫

R3 a
∗(k)a(k)d3k, is preserved

by the interaction (meaning that (49) commutes with this operator). Since
the quantum dot can absorb only finitely many Bosons, the interacting equi-
librium state is a (local) perturbation of the non-interacting one. A physically
different situation occurs when the condensate is coupled to another reservoir.
Then the time-asymptotic states are non-equilibrium stationary states.

As we show in Sect. 3.2, the system has equilibrium states w.r.t. the inter-
acting dynamics, and there is again a special family among them (extremal
factorial ones), ωθβ,λ, labelled by θ ∈ S1, compare with (48).

Let µ be a probability measure on S1 and set

ωµ =
∫

S1
dµ(θ)ωθβ,λ . (50)

Our weak coupling result on Return of Equilibrium (Theorem 1 below) says
that for all µ,A,B

lim
λ→0

lim
T→∞

1
T

∫ T

0

dt ωµ(B∗σtλ(A)B) =
∫

S1
dµ(θ)ωθβ,0(B

∗B)ωθβ,0(A) , (51)

where σtλ is the interacting dynamics. (The expression σtλ(A) has to be un-
derstood cum grano salis, in the sense of Definition 2’, as σtλ can only be
defined on the von Neumann algebra of observables, c.f. Sect. 3.2).

We prove (51) under a condition of regularity and “effectiveness” of the
interaction. Let us close this section by discussing the physical meaning of
the latter condition. Consider first the Bose gas at critical density ρcrit(β)
for some fixed temperature 1/β (so that there is no condensate, ρ0 = 0).
Heuristically, the probability of trapping a Boson in a state f in the quantum
dot is given by

∣
∣
∣〈(G+ ⊗ a(f))(ϕ⊗ Ω̃), e−itHλ(ϕ⊗ Ω̃)〉

∣
∣
∣

2

, (52)

where ϕ an eigenstate of the quantum dot Hamiltonian and the Bose gas is in
the equilibrium state Ω̃ (for the calculation, we put the system in a box and
Ω̃ is a vector in Fock space with Bosons distributed according to a discrete
distribution approaching the Planck distribution as the box size increases).
The interacting Hamiltonian is Hλ = H0 + λ(G+ ⊗ a(g) +G− ⊗ a∗(g)). The
second order contribution in λ to (52), for large values of t, is

P2 = C
λ2

(eβω(1) − 1)2
|f(1)g(1)|2 , (53)
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where we assume that f(r), g(r) are radially symmetric, and where C is a
constant independent of β, f, g. P2 gives the probability of the second order
process where a Boson gets trapped in the quantum dot; the excitation energy
is 1 (the quantum dot Hamiltonian (42) has equidistant eigenvalues) and the
probability density of finding a Boson with energy ω(1) = 1 per unit volume
is ∝ (eβ − 1)−1, according to (8). In order not to suppress this trapping
process at second order in the coupling constant we assume that g(1) �= 0
(“effective coupling”).

Next let us investigate the influence of the condensate. For this we fix a
density ρ0 of the Bose gas and consider very low temperatures (β → ∞), so
that most particles are in the condensate. For an explicit calculation we take
a pure condensate, i.e., Ω̃ in (52) is taken to consist only of particles in the
ground state (with the prescribed density ρ0). We calculate the second order
in λ of (52) to be

Q2(t) = C(1 − cos t)λ2ρ2
0|f(0)g(0)|2 . (54)

We see from (54) that if g(0) = 0 then there is no coupling to the modes of the
condensate: a physically trivial situation where the condensate evolves freely
and the small system coupled to the “excited modes” undergoes return to
equilibrium. We outline in this note results established in [18], which include
the case g(0) �= 0, a situation which could not be handled by approaches
developped so far.

3.1 Non-Interacting System

The states of the small system are determined by density matrices ρ on the
finite dimensional Hilbert space C

d. A density matrix is a positive trace-class
operator, normalized as Tr ρ = 1, and the corresponding state

ωρ(A) = Tr (ρA), A ∈ B(Cd) (55)

is a normalized positive linear functional on the C∗-algebra B(Cd) of all
bounded operators on C

d, which we call the algebra of observables. The
(Heisenberg-) dynamics of the small system is given by (44). Denote the
normalized eigenvector of H1 corresponding to Ej = j by ϕj . Given any in-
verse temperature 0 < β <∞ the Gibbs state ω1,β is the unique β-KMS state
on B(Cd) associated to the dynamics (44). The corresponding density matrix
is

ρβ =
e−βH1

Tr e−βH1
. (56)

Let ρ be a density matrix of rank d (equivalently, ρ > 0) and let {ϕj}d−1
j=0

be an orthonormal basis of eigenvectors of ρ, corresponding to eigenvalues
0 < pj < 1,

∑

j pj = 1. The GNS representation of the pair (B(Cd), ωρ)
is given by (H1, π1, Ω1), where the Hilbert space H1 and the cyclic (and
separating) vector Ω1 are
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H1 = C
d ⊗ C

d , (57)

Ω1 =
∑

j

√
pj ϕj ⊗ ϕj ∈ C

d ⊗ C
d , (58)

and the representation map π1 : B(Cd) → B(H1) is

π1(A) = A⊗ 1l . (59)

We introduce the von Neumann algebra

M1 = B(Cd) ⊗ 1lCd ⊂ B(H1) . (60)

The modular conjugation operator J1 associated to the pair (M1, Ω1) is given
by

J1ψ� ⊗ ψr = C1ψr ⊗ C1ψ� , (61)

where C1 is the antilinear involution C1

∑

j zjϕj =
∑

j zjϕj (complex con-
jugate). According to (58) and (56) the vector Ω1,β representing the Gibbs
state ω1,β is given by

Ω1,β =
1√

Tr e−βH1

∑

j

e−βEj/2ϕj ⊗ ϕj ∈ H1 . (62)

Denote by ωρ,ρ0 the state on W(D) whose generating functional is (7),
where ρ(k) is given in (8), and ρ0 ≥ 0. The GNS representation of the pair
(W(D), ωρ,ρ0) has been given in [2] as the triple (H2, π2, Ω2), where the rep-
resentation Hilbert space is

H2 = F ⊗ F ⊗ L2(S1,dσ) , (63)

F = F(L2(R3,d3k)) is the Bosonic Fock space over L2(R3,d3k) and L2(S1,dσ)
is the space of L2-functions on the circle, with uniform normalized measure dσ
(=(2π)−1dθ, when viewed as the space of periodic functions of θ ∈ [−π, π]).
The cyclic vector is

Ω2 = ΩF ⊗ΩF ⊗ 1 (64)

where ΩF is the vacuum in F and 1 is the constant function in L2(S1,dσ).
The representation map π2 : W(D) → B(H2) is given by

π2(W (f)) = WF (
√

1 + ρf) ⊗WF (
√
ρf) ⊗ e−iΦ(f,θ) , (65)

where WF (f) = eiϕF (f) is a Weyl operator in Fock representation and the
field operator ϕF (f) is

ϕF (f) =
1√
2
(a∗F (f) + aF (f)) (66)

and a∗F (f), aF (f) are the smeared out creation, annihilation operators satis-
fying the commutation relations
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[aF (f), a∗F (g)] = 〈f, g〉, [aF (f), aF (g)] = [a∗F (f), a∗F (g)] = 0. (67)

Our convention is that f �→ aF (f) is an antilinear map. The phase Φ ∈ R

is given in (22). In the absence of a condensate (ρ0 = 0 ⇒ Φ = 0) the
third factor in (63)–(65) disappears and the representation reduces to the
“Araki-Woods representation” in the form it has appeared in a variety of
recent papers. We denote this representation by π0. More precisely, the GNS
representation of (W(D), ωρ,ρ0=0) is given by (F ⊗ F , π0, Ω0), where

π0(W (f)) = WF (
√

1 + ρf) ⊗WF (
√
ρf) , (68)

Ω0 = ΩF ⊗ΩF . (69)

Let us introduce the von Neumann algebras

M0 = π0(W(D))′′ ⊂ B(F ⊗ F) (70)
M2 = π2(W(D))′′ ⊂ B(H2) (71)

which are the weak closures (double commutants) of the Weyl algebra repre-
sented as operators on the respective Hilbert spaces. M2 splits into a product

M2 = M0 ⊗M ⊂ B(F ⊗ F) ⊗ B(L2(S1,dσ)) , (72)

where M is the abelian von Neumann algebra of all multiplication operators
on L2(S1,dσ). It satisfies M′ = M. Relation (72) follows from this: clearly
we have M0

′ ⊗M ⊂ M2
′, so taking the commutant gives

M0 ⊗M ⊃ M2 . (73)

The reverse inclusion is obtained from 1lF⊗F ⊗M ⊂ M2 and M0⊗1lL2(S1) ⊂
M2 (see [2]).

It is well known that M0, the von Neumann algebra corresponding to the
situation without condensate, is a factor. That means that its center is trivial,
Z(M0) = M0∩M0

′ ∼= C. However, we have Z(M2) = (M0⊗M)∩(M0
′⊗M),

Z(M2) = 1lF⊗F ⊗M , (74)

so the von Neumann algebra M2 is not a factor. One can decompose M2 into
a direct integral of factors, or equivalently, one can decompose ωρ,ρ0 into an
integral over factor states. The Hilbert space (63) is the direct integral

H2 =
∫ ⊕

[−π,π]

dθ
2π

F ⊗ F , (75)

and the formula (see (64), (65), (68), (69))

ωρ,ρ0(W (f)) = 〈Ω2, π2(W (f))Ω2〉 =
∫ π

−π

dθ
2π

e−iΦ(f,θ)〈Ω0, π0(W (f))Ω0〉

(76)
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shows that π2 is decomposed as

π2 =
∫ ⊕

[−π,π]

dθ
2π

πθ , (77)

where πθ : W(D) → B(F ⊗ F) is the representation defined by

πθ(W (f)) = e−iΦ(f,θ)π0(W (f)) . (78)

For each fixed θ,
πθ(W(D))′′ = M0 (79)

is a factor. Accordingly we have the factor decomposition M2 =
∫ ⊕
[−π,π]

dθ
2π M0.

Consider the equilibrium state of the uncoupled system

ωcon
β,0 = ω1,β ⊗ ω2,β , (80)

where ω1,β is the Gibbs state of the quantum dot (see (62)), and where ω2,β =
ωρ,ρ0 is the equilibrium state of the heat bath at inverse temperature β and
above critcal density, introduced after (62). The index 0 in (80) indicates the
absence of an interaction between the two systems. The GNS representation
of (A, ωcon

β,0 ) is just (H, π,Ω), where

H = H1 ⊗H2

π = π1 ⊗ π2 (81)
Ωcon
β,0 = Ω1,β ⊗Ω2 . (82)

The free dynamics is αt0, (46). Let

Mcon
β := π(A)′′ = M1 ⊗ M2 =

∫ ⊕

[−π,π]

dθ
2π

M1 ⊗ M0 ⊂ B(H) (83)

be the von Neumann algebra obtained by taking the weak closure of all
observables of the combined system, when represented on H. We have

π2(αt2(W (f))) =
∫ ⊕

[−π,π]

dθ
2π

e−iΦ(f,θ)π0(W (eiωtf)) . (84)

It is well known and easy to verify that for A ∈ A,

(π1 ⊗ π0)(αt0(A)) = eitL0(π1 ⊗ π0)(A)e−itL0 , (85)

where the selfadjoint L0 on H1 ⊗F ⊗F is given by

L0 = L1 + L2 , (86)
L1 = H1 ⊗ 1lCd − 1lCd ⊗H1 , (87)
L2 = dΓ (ω) ⊗ 1lF − 1lF ⊗ dΓ (ω) . (88)
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Here dΓ (ω) is the second quantization of the operator of multiplication by
ω on L2(R3,d3k). We will omit trivial factors 1l or indices Cd , F whenever
we have the reasonable hope that no confusion can arise. It follows from
(83)–(88) that the uncoupled dynamics αt0 is unitarily implemented in H by

π(αt0(A)) = eitL0π(A)e−itL0 , (89)

where the standard, non-interacting Liouvillian L0 is the selfadjoint operator
on H with constant (θ-independent) fiber L0,

L0 =
∫ ⊕

[−π,π]

dθ
2π

L0 . (90)

The r.h.s. of (89) extends to a ∗automorphism group σt0 of Mcon
β , which we

write

σt0 =
∫ ⊕

[−π,π]

dθ
2π

σt0,θ , (91)

where σt0,θ is the ∗automorphism group of M1 ⊗ M0 generated by L0. As is
well known,

Ωβ,0 = Ω1,β ⊗Ω0 (92)

is a (β, σt0,θ)-KMS state of M1 ⊗ M0. The modular conjugation operator J
associated to (M0, Ω1,β ⊗Ω0) is

J = J1 ⊗ J0 , (93)

where J1 is given by (61) and where the action of J0 on F ⊗ F is deter-
mined by antilinearly extending the relation J0π0(W (f))Ω0 = WF (

√
ρf) ⊗

WF (
√

1 + ρ f)Ω0. J0 defines an antilinear representation of the Weyl algebra
according to W (f) �→ J0π0(W (f))J0, which commutes with the representa-
tion π0 given in (68). We view this as a consequence of the Tomita-Takesaki
theory which asserts that M0

′ = J0M0J0.
It follows from (82), (83), (91) that

Ωcon
β,0 =

∫ ⊕

[−π,π]

dθ
2π

Ωβ,0 (94)

is a (β, σt0)-KMS state on Mcon
β , and that the modular conjugation operator

J associated to (Mcon
β , Ωcon

β,0 ) is given by

J =
∫ ⊕

[−π,π]

dθ
2π

J1 ⊗ J0 . (95)

The standard Liouvillian L0, (90), satisfies the relation JL0 = −L0J and

L0Ω
con
β,0 = 0 . (96)
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3.2 Interacting System

The field operator ϕ(f) = 1
i ∂t|t=0π(W (tf)) in the representation π, (81), is

easily calculated to be ϕ(f) =
∫ ⊕
[−π,π]

dθ
2π ϕθ(f), where

ϕθ(f) = ϕF (
√

1 + ρf) ⊗ 1l + 1l ⊗ ϕF (
√
ρf) − Φ(f, θ) , (97)

where Φ(f, θ) is given in (22), and where ϕF (f) is given in (66). The creation
operator a∗θ(f) := 1√

2
(ϕθ(f) − iϕθ(if)) has the expression

a∗θ(f) = a∗F (
√

1 + ρf) ⊗ 1lF + 1lF ⊗ aF (
√
ρf) − (2π)−3/2√ρ0f(0)e−iθ . (98)

Using these expressions it is not difficult to evaluate π
(
G+ ⊗ a(g)

)
+ adjoint

(apply (81) to (49)), and to see that the standard interacting Liouvillian is
given by

Lλ =
∫ ⊕

[−π,π]

dθ
2π

Lλ,θ , (99)

where the selfadjoint operator Lλ,θ is

Lλ,θ = L0 + λIθ . (100)

Here L0 is given in (86) and we define

Iθ = I +Kθ , (101)

I = G+ ⊗ 1lCd ⊗
{

aF (
√

1 + ρ g) ⊗ 1lF + 1lF ⊗ a∗F (
√
ρ g)

}

+ adj. (102)

−1lCd ⊗ C1G+C1 ⊗
{

a∗F (
√
ρg) ⊗ 1lF + 1lF ⊗ aF (

√
1 + ρ g)

}

+ adj.

Kθ = K1
θ ⊗ 1lCd ⊗ 1lF⊗F − 1lCd ⊗ C1K

1
θC1 ⊗ 1lF⊗F (103)

K1
θ = −(2π)−3/2√ρ0

(

G+g(0)eiθ +G−g(0)e−iθ
)

with C1, Φ defined in (61), (22) and where the creation and annihilation op-
erators a∗F , aF are defined by (67). The operator Lλ,θ generates a Heisenberg
dynamics σtλ,θ on the von Neumann algebra M1 ⊗ M0. It is convenient to
write (compare with (91))

σtλ =
∫ ⊕

[−π,π]

dθ
2π

σtλ,θ . (104)

To the interacting dynamics (104) corresponds a β-KMS state on Mcon
β , the

equilibrium state of the interacting system. It is given by the vector

Ωcon
β,λ = (Zcon

β,λ)−1

∫ ⊕

[−π,π]

dθ
2π

Ωθβ,λ , (105)

where Zcon
β,λ is a normalization factor ensuring that ‖Ωcon

β,λ‖ = 1, and where
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Ωθβ,λ = (Zθβ,λ)
−1e−β(L0+λIθ,�)/2Ωβ,0 ∈ H1 ⊗F ⊗F . (106)

Zθβ,λ is again a normalization factor, and Iθ,� is obtained by dropping the
terms coming with a minus sign in the r.h.s. of both (102) and (103). The fact
that Ωβ,0, (92), is in the domain of the unbounded operator e−β(L0+λIθ,�)/2,
provided ‖g/√ω‖L2(R3) < ∞, can be seen by expanding the exponential in
a Dyson series and verifying that the series applied to Ωβ,0 converges, see
e.g. [3]. It then follows from the generalization of Araki’s perturbation theory
of KMS states, given in [7], that Ωθβ,λ is a (β, σtλ,θ)-KMS state on M1 ⊗M0,
denoted by

ωθβ,λ(·) = 〈Ωθβ,λ, ·Ωθβ,λ〉 , (107)

and that
Lλ,θ Ω

θ
β,λ = 0 . (108)

We conclude that Ωcon
β,λ is a (β, σtλ)-KMS state on Mcon

β , and that LλΩcon
β,λ = 0.

3.3 Stability of the Quantum Tweezers, Main Results

We make two assumptions on the form factor g determining the interaction.

(A1) Regularity. The form factor g is a function in C4(R3) and satisfies

‖(1 + 1/
√
ω)(k · ∇k)j

√
1 + ρ g‖L2(R3,d3k) <∞ , (109)

for j = 0, . . . , 4, and ‖ (1 + ω)2
√

1 + ρ g‖L2(R3,d3k) <∞.
(A2) Effective coupling. We have

∫

S2 dσ|g(1, σ)|2 �= 0, where g is represented
in spherical coordinates.

Remarks. 1) The operator k · ∇k emerges because we apply the positive
commutator method with conjugate operator 1

2 (k · ∇k + ∇k · k) (dilation
generator). It is important to notice that in order to couple the particles of
the Bose-Einstein condensate to the quantum dot, we must treat the case
g(0) �= 0. If the dispersion relation is given by ω(k) ∼ |k|s, as |k| ∼ 0, then
(109) is satisfied for s < 3/2. (This does not include non-relativistic Bosons,
for which s = 2.)

2) Condition (A2) is often called the Fermi Golden Rule Condition. It
guarantees that the processes of absorption and emission of field quanta by
the small system, which are the origin of the stability of the equilibrium, are
effective (see the discussion at the beginning of Sect. 3). We integrate over a
sphere of radius one since the gap between neighbouring eigenvalues of H1 is
equal to one (Bohr frequency).

Let B ∈ A, µ a probability measure on S1, and define a state on A

by ωµB(A) =
∫

S1 dµ(θ)ωθβ,λ(B
∗AB), where ωθβ,λ(A) = 〈Ωθβ,λ, AθΩθβ,λ〉, with

Aθ := (π1 ⊗ πθ)(A) (see (107), (59), (78)). We introduce the suggestive no-
tation ωµB(σtλ(A)) :=

∫

S1 dµ(θ)〈σtλ,θ(Aθ)〉BθΩθ
β,λ

, where 〈A〉ψ = 〈ψ,Aψ〉, and
where σtλ,θ is given in (104).
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Theorem 1 (Stability of equilibrium with condensate, [18]). Assume
conditions (A1) and (A2). Let A,B ∈ A, and let µ be a probability measure
on S1. Then

lim
λ→0

lim
T→∞

1
T

∫ T

0

ωµB(σtλ(A))dt =
∫

S1
dµ(θ)ωθβ,0(B

∗B)ωθβ,0(A) , (110)

where ωθβ,0 is given in (48).

The proof of Theorem 1 follows the ideas of the spectral method outlined
in Subsection 1.5. It is based on the following result, which in turn is proved
using positive commutator techniques.

Theorem 2 (Structure of kernel, [18]). Assume Conditions (A1) and
(A2) and let P θβ,λ the projection onto the subspace spanned by the interacting
KMS state Ωθβ,λ, (106). Let θ ∈ [−π, π] be fixed. Any normalized element ψλ ∈
Ker(Lλ,θ)∩

(
RanP θβ,λ

)⊥ converges weakly to zero, as λ→ 0. The convergence
is uniform in θ ∈ [−π, π] and in β ≥ β0, for any β0 > 0 fixed.

I would like to express my thanks to Joachim Asch and to Alain Joye for
having organized Qmath9, and for having invited me to make a contribution.
My thanks also go to the referee for his careful reading of the manuscript.
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14. V. Jaks̆ić, C.-A. Pillet: Commun. Math. Phys. 176, 619 (1996).
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Abstract. In a recent paper [17] we conjectured that for ferromagnetic
Heisenberg models the smallest eigenvalues in the invariant subspaces of fixed to-
tal spin are monotone decreasing as a function of the total spin and called this
property ferromagnetic ordering of energy levels (FOEL). We have proved this con-
jecture for the Heisenberg model with arbitrary spins and coupling constants on a
chain [17, 20]. In this paper we give a pedagogical introduction to this result and
also discuss some extensions and implications. The latter include the property that
the relaxation time of symmetric simple exclusion processes on a graph for which
FOEL can be proved, equals the relaxation time of a random walk on the same
graph with jump rates given by the coupling constants, i.e., the relaxation time is
independent of the number of particles. Therefore, our results also provide a proof
of Aldous’ Conjecture in one dimension.

1 Introduction

The ferromagnetic Heisenberg model is the primordial quantum spin model.
It has been studied almost continuously since it was introduced by Heisen-
berg in 1926. In the course of its long history, this model has inspired an
amazing variety of new developments in both mathematics and physics. The
Heisenberg Hamiltonian is one of the basic, non-trivial quantum many-body
operators, and understanding its spectrum has been a guiding problem of
mathematical physics for generations.

A lot of attention has been given to the Bethe-Ansatz solvable one-
dimensional spin-1/2 model, which has an infinite-dimensional algebra of
symmetries [9]. The results we will discuss here are not related to exact so-
lutions but there is an essential connection with the SU(2) symmetry of the
model, much in the spirit of the famous result by Lieb and Mattis ( [15], see
also [14, footnote 6]). The Lieb-Mattis Theorem proves “ordering of energy
levels” for a large class of antiferromagnetic Heisenberg models on bipartite
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tirety, for non-commercial purposes.

B. Nachtergaele and S. Starr: Ordering of Energy Levels in Heisenberg Models and Applica-
tions, Lect. Notes Phys. 690, 149–170 (2006)
www.springerlink.com



150 B. Nachtergaele and S. Starr

lattices. Namely, if the two sublattices are A and B, and all interactions
within A and B are ferromagnetic while interactions in between A and B
are antiferromagnetic, then the unique ground state multiplet has total spin
equal to |SA − SB |, where SA and SB are the maximum total spins on the
two sublattices. Moreover, the minimum energy in the invariant subspace of
total spin S, for S ≥ |SA − SB |, is monotone increasing as a function of S.
The most important example where this theorem provides useful information
is the usual antiferromagnet on a bipartite lattice with equal-size sublattices.
Then the ground state is a unique spin singlet, and the minimum energy lev-
els for each possible total spin S, are monotone increasing in S. Our aim is a
similar result for ferromagnets. To be able to state the ferromagnetic ordering
of energy levels (FOEL) property precisely, we first give some definitions.

Let Λ be a finite connected graph with a set of vertices or sites, x, that
we will also denote by Λ and a set E of unoriented edges, or bonds, (xy). We
will often write x ∼ y ∈ Λ to signify that the edge (xy) is present in Λ. In
many physical examples one has Λ ⊂ Z

d.
Each site x ∈ Λ has a quantum spin of magnitude sx ∈ {1/2, 1, 3/2, . . .},

associated with it. The state space at x is 2sx+1-dimensional and we denote
by Six, i = 1, 2, 3, the standard spin-sx matrices acting on the xth tensor
factor in the Hilbert space H =

⊗

x∈ΛC
2sx+1. The isotropic (also called

XXX) ferromagnetic Heisenberg Hamiltonian on Λ is given by

HΛ = −
∑

x∼y∈Λ
JxySx · Sy , (1)

where the real numbers Jxy are the coupling constants, which we will always
assume to be strictly positive (that they are positive is what it means to have
the ferromagnetic Heisenberg model). This model is widely used to describe
ferromagnetism at the microscopic level whenever itinerant electron effects
can be ignored. Examples are magnetic domain walls and their properties
and a variety of dynamical phenomena.

The spin matrices generate an irreducible representation of SU(2) at each
vertex. This representation is conventionally denoted by D(sx). An important
feature of the Hamiltonian (1) is that it commutes with SU(2) via the rep-
resentation ⊗

x∈Λ
D(sx) (2)

or, equivalently, with the total spin matrices defined by

SiΛ =
∑

x∈Λ
Six, i = 1, 2, 3 .

and hence also with the Casimir operator given by

C = SΛ · SΛ .
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The eigenvalues of C are S(S + 1), S = Smin, Smin + 1, . . . , Smax ≡
∑

x∈Λ sx,
which are the spin labels of the irreducible representations that occur in the
direct sum decomposition of the tensor product representation (2) into irre-
ducible components. The value of Smin is usually 0 or 1/2, but may be larger
if one of the sx is greater than Smax/2. The decomposition into irreducible
components can be obtained by repeated application of the Clebsch-Gordan
series:

D(s1) ⊗D(s2) ∼= D(|s1−s2|) ⊕D(|s1−s2|+1) · · · ⊕D(s1+s2) . (3)

The label S is called the total spin, and the eigenvectors of the eigenvalue
S(S+1) of C, are said to have total spin S. Let H(S) denote the corresponding
eigenspace. Since C commutes with HΛ, the spaces H(S) are invariant sub-
spaces for HΛ. For any hermitian matrix H leaving the spaces H(S) invariant
we define

E(H,S) = min specH|H(S) .

By Ferromagnetic Ordering of Energy Levels (FOEL) we mean the prop-
erty

E(H,S) ≤ E(H,S′), if S′ < S .

for all S and S′ in the range [Smin, Smax], and we will speak of strict FOEL
if the inequality is strict.

In particular, if HΛ has the FOEL property it follows that its ground
state energy is E(HΛ, Smax), which is indeed well-known to be the case
for the Heisenberg ferromagnets. Moreover, since the multiplet of maximal
spin is unique, FOEL also implies that the gap above the ground state is
E(HΛ, Smax − 1) − E(HΛ, Smax), which is well-known for translation invari-
ant Heisenberg ferromagnets on Euclidean lattices.

Conjecture 1. All ferromagnetic Heisenberg models have the FOEL property.

The FOEL property and the Lieb-Mattis theorem applied to a spin-1
chain of 5 sites is illustrated in Fig. 1.

Our main result is a proof of this conjecture for the special case of
arbitrary ferromagnetic Heisenberg models on chains, i.e., one-dimensional
model [17,18,20].

Theorem 1. Strict FOEL holds for ferromagnetic XXX spin chains, i.e., for
all

H = −
L−1∑

x=1

Jx,x+1

(
1

sxsx+1
Sx · Sx+1 − 1

)

, (4)

for any choice of sx ∈ {1/2, 1, 3/2, . . .} and Jx,x+1 > 0.



152 B. Nachtergaele and S. Starr

−5 −4 −3 −2 −1 0 1 2 3 4 5

0

5

10

S(3)−eigenvalue / M−sector

E
ne

rg
y

Spectrum of SU(2) − symmetric Heisenberg model : j = 1,  L = 5

0 

2 
3 
4 
5 

0 

1 

1 

2 

3 

4 

5 

Fig. 1. The spectrum of a ferromagnetic Heisenberg chain consisting of 5 spin-1
spins, and with constant couplings. On the horizontal axis we have plottted the
eigenvalue of the third component of the total spin. The spectrum is off-set so that
the ground state energy vanishes. The arrows on the right, with label S, indicate
the multiplets of eigenvalues E(H, S), i.e., the smallest eigenvalue in the subspace
of total spin S. The monotone ordering of the spin labels is the FOEL property. On
the left, we have indicated the largest eigenvalues for each value of the total spin.
The monotone ordering of their labels in the range 1, . . . , 5, is the content of the
Lieb-Mattis theorem applied to this system

2 Proof of the Main Result

Our proof of Theorem 1 proceeds by a finite induction argument for a se-
quence of models with Hamiltonians Hk = H∗

k , 1 ≤ k ≤ N , on Hilbert spaces
Hk, with the following properties:

(i) There is a unitary representation of SU(2), Uk, on Hk, that commutes
with Hk.

(ii) There are isometries Vk : Hk+1 → Hk ⊗C
2, interwining the represen-

tations Uk+1 and Uk ⊗ D(1/2), i.e., VkUk+1(g) = (Uk(g) ⊗ D(1/2)(g))Vk, for
all g ∈ SU(2), and such that

Hk+1 ≥ V ∗
k (Hk ⊗ 1l)Vk
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(iii) H1 has the FOEL property.
(iv) For every S = 0, 1/2, 1, 3/2, . . ., for which H(S) �= {0}, we have

E(Hk+1, S + 1/2) < E(Hk, S) .

To prove FOEL and not necessarily strict FOEL, one only needs to have ≤
here.

We will first present the induction argument using the assumptions (i)–
(iv), and then construct the sequence Hk satisfying these four assumptions.
This argument is a generalization of results in [12] and [17]. The sequence
of Hamiltonians will, roughly speaking, be a sequence of systems of increas-
ing size, starting with the trivial system of a single spin. Property (i) sim-
ply means that all models will have isotropic interactions. Property (ii) will
closely guide the construction of our sequence. Property (iii) will be trivial
in practice, since H1 will be a multiple of the identity on H1 in our applica-
tions. Property (iv) has a nice physical interpretation at least in some of the
examples we will consider (see Sect. 5.2). It is our (in) ability to prove (iv)
that limits the range of models for which we can prove FOEL.

Theorem 2. Let (Hk)1≤k≤N , be a sequence of Hamiltonians satisfying prop-
erties (i)–(iv). Then, for all k, Hk has the FOEL property.

Proof. Since H1 has the FOEL property by assumption, it is sufficient to
prove the induction step. Consider the following diagram:

E(Hk, S) >1 E(Hk, S + 1) > E(Hk, S + 2)
>

2 ≥ 3

>

2 ≥

>

E
(
Hk+1, S + 1

2

)
>4 E

(
Hk+1, S + 3

2

)
> E

(
Hk+1, S + 5

2

)

The inequality labeled 1 is FOEL for Hk, and inequality 2 is property (iv)
assumed in the theorem. We will prove inequality 3 (using inequality 1) and,
combined with inequality 2 this implies inequality 4, which is the induction
step.

As before, we use superscripts to Hilbert spaces to denote their subspaces
of fixed total spin. To prove inequality 3, we start from the variational prin-
ciple:

E(Hk+1, S + 1/2) = inf
φ∈H(S+1/2)

k+1 ,‖φ‖=1

〈φ,Hk+1φ〉

≥ inf
φ∈H(S+1/2)

k+1 ,‖Vkφ‖=1

〈φ, V ∗
k (Hk ⊗ 1l2)Vkφ〉

≥ inf
ψ∈(Hk⊗C2)(S+1/2),‖ψ‖=1

〈ψ, (Hk ⊗ 1l2)ψ〉

The first inequality uses the fact that Vk is an isometry and property (ii).
For the second inequality we enlarged the subspace over which the infimum
is taken.
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Now, we use the Clebsch-Gordan series (3) to see that (Hk⊗C
2)(S+1/2) ⊂

(H(S)
k ⊕H(S+1)

k ) ⊗ C
2. Therefore

E(Hk+1, S + 1/2) ≥ min{E(Hk, S), E(Hk, S + 1)} = E(Hk, S + 1) .

Clearly, Hk⊗1l2 restricted to (H(S)
k ⊕H(S+1)

k )⊗C
2 has the same spectrum as

Hk restricted to H(S)
k ⊕H(S+1)

k . The last equality then follows from inequality
1, i.e., the induction hypothesis. This concludes the proof of Theorem 2.

For the proof of Theorem 1 we will apply Theorem 2 to the sequence
(Hk)1≤k≤N , with N = 2Smax, H1 = 0, and HN = H, constructed as follows:
for each k = 1, . . . , N−1, the model with Hamiltonian Hk+1 is obtained from
Hk in one of two ways: either a new spin 1/2 is added to right of the chain, or
the magnitude of the rightmost spin is increased by 1/2. In both cases, Smax

goes up by 1/2 at each step, hence N = 2
∑L
x=1 sx. Each Hk is of the form

(4), and we have written the interactions in such a way that the coupling
constants Jx,x+1 can be taken to be independent of k, although this is not
crucial since all arguments work for any choice of positive coupling constants
at each step. The parameters that change with k are thus L and the set of
spin magnitudes (sx)Lx=1. To be explicit, the two possible ways of deriving
Hk+1 from Hk are summarized in Table 1.

Table 1. Summary of the k-dependence of the sequence of models used in the proof
by induction of Theorem 2

parameter Case I Case II

L Lk+1 = Lk + 1 Lk+1 = Lk

{sx} sLk+1(k) = 0, sLk+1(k + 1) = 1/2 sLk(k + 1) = sLk(k) + 1/2
H Hk+1 = Hk ⊗ C

2 Hk+1 = V (Hk ⊗ C
2)

The Hamiltonians are of the form

Hk = −
Lk−1∑

x=1

Jx,x+1

(
1

sx(k)sx+1(k)
Sx · Sx+1 − 1

)

, (5)

where Six, i = 1, 2, 3, are the 2sx(k)+1 dimensional spin matrices. To simplify
the notation, the dependence on k will often be omitted further on.

We now have a uniquely defined sequence of Hamiltonians (Hk)1≤l≤N ,
with H1 = 0 and HN = H. Next, we proceed to proving the properties (i)–
(iv). Property (i) is obvious by construction. Property (iii) is trivial since
H1 = 0. To verify property (ii), we need to distinguish the two cases for the
relation between Hk and Hk+1, as given in Table 1.

For Case I, Uk+1 = Uk ⊗D(1/2) and we can take the identity map for V .
Property (ii) follows from the positivity of the additional interaction term in
Hk+1:
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Hk+1 = Hk + JLk,Lk+1

(
1

sLk
· (1/2)

SLk
· SLk+1 − 1

)

.

For Case II, we have Hk = Hl ⊗ C
2sLk

+1 and Hk+1 = Hl ⊗ C
2sLk+1+1,

for some l < k, possibly l = 0,H0 = C. Since sLk+1 = sLk
+ 1/2, there

is a (up to a phase) unique SU(2) intertwining isometry W : C
2sLk+1 →

C
2sLk

+1 ⊗C
2, namely the W that identifies the spin sLk+1 subrepresentation

in D(sLk
) ⊗D(1/2). From the intertwining property, the irreducibility of the

spin representations, and the SU(2) commutation relations one deduces that
there is a constant c such that

W ∗(SiLk
(k) ⊗ 1l)W = cSiLk

(k + 1), i = 1, 2, 3 .

The constant c is most easily determined by calculating the left and right
hand sides on a highest weight vector (a simultaneous eigenvector of C and
S3 with eigenvalues S(S + 1) and S, respectively). One finds

c =
sLk

(k)
sLk

(k + 1)
.

Now, take V = 1lHl
⊗W . It is then straightforward to check that

V ∗
(

1
sLk−1sLk

(k)
SLk−1 · SLk

⊗ 1l2

)

V =
1

sLk−1sLk
(k + 1)

SLk−1 · SLk
,

where the spin matrices on the left hand side are of the magnitude determined
by sLk−1 and sLk

(k) , while on the right hand side they are the magnitudes
of the spins are sLk−1 and sLk

(k + 1).
To prove Property (iv), we start by observing that

spec(Hk|H(S)
k

) = spec(Hk|V(S)
k

)

where V(S)
k is the subspace of Hk of all highest weight vectors of weight S.

This is an invariant subspace for Hk and for every eigenvalue of Hk|H(S)
k

there

is at least one eigenvector in V(S)
k . Let d(k, S) denote the dimension of V(S)

k .
Property (iv) will be obtained as a consequence of the following proposi-

tion and a version of the Perron-Frobenius Theorem.

Proposition 1. We have d(k+1, S+1/2) ≥ d(k, S) and there are bases B(S)
k

for V(S)
k such that the matrices A(k,S) of Hk|V(S)

k

with respect to these bases
have the following properties:

A
(k,S)
ij ≤ 0, for 1 ≤ i �= j ≤ d(k, S), 1 ≤ k ≤ N

A
(k+1,S+1/2)
ij ≤ A

(k,S)
ij , for 1 ≤ i, j ≤ d(k, S), 1 ≤ k ≤ N − 1 .
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For reasons of pedagogy and length, we will give the complete proof of
this proposition only for the spin 1/2 chain. The proposition provides the
assumptions needed to apply a slightly extended Perron-Frobenius theorem
(see, e.g., [23]), which we state below.

The standard Perron-Frobenius Theorem makes several statements about
square matrices with all entries non-negative, which we will call a non-
negative matrix for short. Recall that a non-negative matrix A is called ir-
reducible if there exists an integer n ≥ 1 such that the matrix elements of
An are all strictly positive. The standard results are the following: (i) every
non-negative matrix has a non-negative eigenvalue equal to its spectral ra-
dius (hence it has maximal absolute value among all eigenvalues), and there
is a corresponding non-negative eigenvector (i.e., with all components non-
negative); (ii) if A is an irreducible non-negative matrix there is a unique
eigenvalue with absolute value equal to the spectral radius of A, which is
strictly positive and has algebraic (and hence geometric) multiplicity 1. Its
corresponding eigenvector can be chosen to have all strictly positive compo-
nents.

If A is a square matrix with all off-diagonal matrix elements non-positive,
we will call A irreducible if there exists a constant c such that c1l − A is
irreducible according to the previous definition. From the standard Perron-
Frobenius Theorem it immediately follows that the eigenvalue with smallest
real part of an irreducible matrix in the last sense is real, has algebraic (and
hence geometric) multiplicity 1, and that the corresponding eigenvector can
be chosen to have all components strictly positive. In the following, we will
repeatedly use the information provided by the standard Perron-Frobenius
Theorem as described above without further reference. Let specrad(A) denote
the spectral radius of a square matrix A.

Lemma 1. Let A = (aij) and B = (bij) be non-negative n×n matrices, and
assume that aij ≤ bij, for all 1 ≤ i, j ≤ n. Then

specrad(A) ≤ specrad(B) . (6)

If B is irreducible and there is at least one pair ij such that aij < bij, then

specrad(A) < specrad(B) . (7)

Since the spectral radii are also the eigenvalues of maximal absolute value,
the same relations holds for these eigenvalues.

Proof. Let r = specrad(A). Then A has a non-negative eigenvector, say v,
with eigenvalue r. If aij ≤ bij , for all 1 ≤ i, j ≤ n, it is clear that there is a
non-negative vector w such that

Bv = rv + w . (8)

This relation implies that ‖Bk‖ ≥ rk, for all positive integers k and, hence,
specrad(B) ≥ r. This proves (6).
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To prove (7) for irreducible B such that aij ≤ bij for at least one pair
of indices, let k be a positive integer such that Bk is strictly positive. This
implies that Bkv has all strictly positive components. From this it is easy to
see that the non-negative w such that

Bkv = rkv + w

cannot be the zero vector. Therefore there is z ∈ R with all strictly positive
components such that

Bk+1v = rk+1v + z .

Since z is strictly positive, there exists ε > 0 such that, εv ≤ z componentwise,
and therefore we can find δ > 0 such that

Bk+1v = (r + δ)k+1v + z′ ,

with z′ non-negative. We conclude that specrad(B) ≥ r + δ > specrad(A).

Note that the argument that proves this lemma could also be used to give
a lower bound for the difference of the spectral radii. Since we do not need
it, we will not pursue this here. The next theorem is an extension of Lemma
1.

Theorem 3. Let A = (aij) and B = (bij) be two square matrices of size n
and m, respectively, with n ≤ m, both with all off-diagonal matrix elements
non-positive, and such that bij ≤ aij, for 1 ≤ i, j ≤ n. Then

inf spec(B) ≤ inf spec(A) . (9)

If B is irreducible and either (i) there exists at least one pair ij, 1 ≤ i, j ≤ n,
such that bij < aij; or (ii) bij < 0, for at least one pair ij with at least one
of the indices i or j > n, then

inf spec(B) < inf spec(A) . (10)

Proof. Let c ≥ 0 be a constant such that the matrices A′ = (a′ij) = c1ln − A
and B′ = (b′ij) = c1lm − B are non-negative. Define A′′ to be the m × m
matrix obtained by extending A′ with zeros:

(a′′ij) = A′′ =
[
A′ 0
0 0

]

.

It is easy to see that a′′ij ≤ b′ij , for 1 ≤ i, j ≤ m. Therefore, we can apply
Lemma 1 with A′′ playing the role of A, and B′ playing the role of B. Clearly,
specrad(A′′) = c− inf spec(A) and specrad(B′) = c− inf spec(B). Therefore,
this proves (9).

Similarly, (10) follows from the additional assumptions and (7).

Proof of Theorem 1: The remaining point was to prove property (iv)
needed in the assumptions of Theorem 2. We use Proposition 1, which we
will prove in the next section, and apply Theorem 3 with A = A(k,S) and
B = A(k+1,S+1/2). This completes the proof.
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3 The Temperley-Lieb Basis. Proof of Proposition 1

In the proof of Theorem 1 in the previous section we used the matrix repre-
sentation of the Hamiltonians restricted to the highest weight spaces given
by Proposition 1. We now give the complete proof of that proposition for the
spin 1/2 chain and sketch the proof in the general case.

The main issue is to find a basis of the highest weight spaces with the de-
sired properties. Fortunately for us, such a basis has already been constructed
and we only need to show that it indeed had the properties claimed in Propo-
sition 1. For the spin 1/2 chain we will use the Temperley-Lieb basis [22], and
for the general case its generalization to arbitrary spin representations intro-
duced by Frenkel and Khovanov [6].

3.1 The Basis for Spin 1/2

We start with the spin 1/2 chain, i.e., sx = 1/2, for all x. In this case Smax =
k/2 and V (S)

k is the subspace of (C2)⊗k consisting of all vectors ψ such that
S3ψ = Sψ and S+ψ = 0. Let n be the “spin-deviation” defined as S =
k/2 − n. Then, n is a non-negative integer. The case n = 0 is trivial since
dimV(k/2)

k = 1, namely just the mutiples of the vector |+〉 ⊗ |+〉 ⊗ · · · ⊗ |+〉,
where |±〉 is the basis of C

2 that diagonalizes S3. For n ≥ 1, the basis vectors
are a tensor product of n singlet vectors ξ = |+〉⊗|−〉−|−〉⊗|+〉, accounting
for two sites each, and k−2n factors equal to |+〉. Such vectors are sometimes
called Hulthén brackets. It is clear that any such factor is a highest weight
vector of weight k/2 − n, just calculate the action of S3 and S+ on such a
vector. They are not linearly independent however, except in the trivial case
k = 2. The contribution of Temperley and Lieb was to show how to select
a complete and linearly independent subset, i.e., a basis. How to select the
Temperley-Lieb basis, is most easily explained by representing the vectors by
configurations of n arcs on the k vertices 1, . . . , n. The arcs are drawn above
the line of vertices as shown in Fig. 2. Each arc represents a spin singlet ξ,
and each unpaired vertex represents a factor |+〉. The vectors (configurations
of arcs) selected for the basis are those that satisfy two properties: (i) the
arcs are non-crossing, (ii) no arc spans an unpaired vertex. The resulting set
is a (non-orthogonal) basis. E.g., the basis for k = 5 and n = 2 is shown
in Fig. 2. We will use, α, β, . . ., to denote arc configurations that obey these
rules, and by the corresponding basis vectors will be denoted by |α〉 , |β〉 , . . ..
We will use the notation [xy] ∈ α to denote that the arc connecting x and y
is present in α.

Proof of Proposition 1 for the spin 1/2 chain. The action of the Hamil-
tonian on the basis vectors has an appealing graphical representation. We
can write the Hamiltonian as

Hk = −2
k−1∑

x=1

Jx,x+1Ux,x+1
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Fig. 2. The possible configurations of 2 arcs on 5 vertices

where Ux,x+1 = −ξ⊗ξ∗ which, up to a factor −2, is the orthogonal projection
onto the singlet vector acting on the xth and x + 1st factor in the tensor
product. The Ux,x+1 form a representation of the Temperley-Lieb algebra
with parameter q = 1 (see, e.g, [10]). It is a straightforward calculation to
verify the action of Ux,x+1 on a basis vector |α〉: (i) if both x and x + 1
are unpaired vertices in α, Ux,x+1 |α〉 = 0; (ii) if [x, x + 1] ∈ α, we have
Ux,x+1 |α〉 = −2 |α〉; (iii) if [uv] ∈ α, with exactly one of the vertices u and v
equal to x or x+ 1, we have Ux,x+1 |α〉 = |β〉, where β is obtained form α by
removing [uv] and adding [x, x+1]; (iv) if [ux] and [x+1, v] are both present
in α, we have Ux,x+1 |α〉 = |β〉, where β is obtained form α by removing [ux]
and x+ 1, v], and adding [uv] and [x, x+ 1].

The action of Ux,x+1 on the vector |α〉 can be graphically represented by
placing the diagram shown in Fig. 3 under the diagram for α, and read off
the result using the graphical representation of the rules (i)–(iv) shown in
Fig. 4. The action of the Hamiltonian is then obtained by summing over x
as shown in Figs. 5 and 6.

x x+1

Fig. 3. The graphical representation of Ux,x+1

The important observation is the action of the Hamiltonian on a basis
vector |α〉 yields a linear combination of basis vectors with non-positive coef-
ficients except possibly for the coefficient of |α〉 itself, which has the opposite
sign resulting from the “bubble” in the graphical representation. This means
that all off-diagonal matrix elements are non-positive as claimed for the ma-
trices Ak,S in the proposition.

The second will follow from the observation that Ak,S is a submatrix of
Ak+1,S+1/2. Note that the spin deviation for V (S)

k and V (S+1/2)
k+1 is the same,

say n. Let us order the basis elements of V (S+1/2)
k+1 so that all α where the

last vertex, k + 1, is unpaired, are listed first, and consider the αβ matrix
element of Hk+1 for such α and β. Then, it is easy to see that there are no
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= 0

(i)

= -2

(ii)

=

(iii)

=

(iv)

Fig. 4. The graphical rules (i)–(iv) for the action of Ux,x+1 on a Temperley-Lieb
basis vector

+ +

+

Fig. 5. Action of the Hamiltonian of the spin-1/2 XXX or XXZ chain on a gen-
eralized Hulthén bracket, for L = 4, k = 1

contributions from the k, k + 1 term in Hamiltonian, since its action results
in non-zero coefficients only for configurations where k+1 belongs to an arc.
This means that these matrix elements are identical to those computed for
Hk for basis vectors labeled α′ and β′ obtained from α and β by dropping
the last vertex, k + 1 which is unpaired.

This completes the proof of Proposition 1 in the case of the pure spin 1/2
chain. Q.E.D.

3.2 The Basis for Higher Spin

We are looking for a basis of the space of highest weight vectors of weight
S of the spin chain with Hilbert space Hk. Equivalently, we may look for
a basis of the SU(2) intertwiners D(S) → Hk. There is a graphical algebra
of such intertwiners with a very convenient basis, the dual canonical basis,
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+

+ +

+

Fig. 6. Action of the Hamiltonian of the spin-1/2 XXX or XXZ chain on a gen-
eralized Hulthén bracket, for k = 6, n = 2

introduced by Frenkel and Khovanov [6]. This is the basis we will use, but
we will present it as a basis for the subspaces V (S)

k of highest weight vectors.
The state space at site x can be thought of as the symmetric part of 2sx

spins- 1
2 . We can label the 2sx + 1 states by the Ising configurations

|↑↑ · · · ↑〉 , |↓↑ · · · ↑〉 , |↓↓↑ · · · ↑〉 , . . . , |↓↓↓ · · · ↓〉 .

where each configuration stands for the equivalence class up to re-ordering
of all configurations with the same number of down spins. E.g., |↓↓↑↑↑〉 is
the vector normally labelled as |j,m〉 = |5/2, 1/2〉, and not the tensor |↓〉 ⊗
|↓〉⊗ |↑〉⊗ |↑〉⊗ |↑〉. The states for a chain of L spins of magnitudes s1, . . . , sL
are then tensor products of these configurations. We shall call such vectors
ordered Ising configurations. These tensor product vectors, in general, are not
eigenvectors of the Casimir operator S, i.e., they are not of definite total spin.
Suitable linear combinations that do have definite total spin are obtained by
extending the Hulthén bracket idea to arbitrary spin as follows. Start from
any ordered Ising configuration such that 2M = # ↑ −# ↓. Then, look for
the leftmost ↓ that has a ↑ to its left, and draw an arc connecting this ↓ to
the rightmost ↑, left of it. At this point, one may ignore the paired spins,
and repeat the procedure until there is no remaining unpaired ↓ with an
unpaired ↑ to its left. This procedure guarantees that no arcs will cross and
no arc will span an unpaired spin. The result, when ignoring all paired spins,
is an ordered Ising configuration of a single spin. See Fig. 7 for an example
of this procedure. The result is a basis for the spin chain consisting entirely
of simultaneous eigenvectors of the total spin and its third component, with
eigenvalues S and M , respectively. The value of M is 1/2 times the difference
between the number of up spins and the number of down spins in the ordered
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Fig. 7. Construction of a basis vector from an ordered Ising configuration

Ising configuration. The total-spin S is equal to S minus the number of pairs.
Clearly, the highest weight vectors are then those that have no unpaired ↓,
i.e., the ordered Ising configuration consists exclusively of up spins.

The vectors can be expanded in the tensor product basis by the following
procedure: each arc is replaced by the spin singlet |↑〉⊗|↓〉−|↓〉⊗|↑〉, and the
unpaired spins are replaced by their tensor products. Finally, one symmetrizes
in each block.

Next, we briefly sketch how the properties claimed in Proposition 1 can
be verified. To do this we have to calculate the action of the Hamiltonian on
the highest weight vector constructed in the previous paragraph. This is most
easily accomplished by deriving a graphical representation for the action of
each term in the Hamiltonian as we did in the case of the pure spin 1/2
chain. The Heisenberg interaction for arbitrary spins of magnitude sx and
sx+1 can be realized as an interaction between spin 1

2 ’s making up the spin
sx and sx+1, conjugated with the projections onto the symmetric vectors.
The result is the following:

−hx,x+1 =
1
2

(
1

sxsx+1
Sx · Sx+1 − 1

)

=
2sx 2sx+1

2sx 2sx+1

... ...

.

Here, the rectangles with label 2s represent the symmetrizing projections on
the space of 2s spin 1

2 variables. The fundamental algebraic property that
allows us to calculate the matrix elements of Hk graphically is the Jones-
Wenzl relation (c.f., [10] and references therein):

2s 1

2s 1

2s+ 1
. . .

. . .

=

2s 1

2s 1

2s 1
. . .

. . .

+
2s

2s+ 1

2s 1

��

��. . .

. . .

2s− 1

2s 1

For any element of the basis introduced above one can now compute the
action of the Hamiltonian and write it as a linear combination of the same
basis vectors. From the grahical rules it is easy to observe that all off-diagonal
matrix elements are non-positive.
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As before, it is straighforward to identify the basis for V(S)
k with a subset

of the basis for V(S+1/2)
k+1 . The label of the rightmost box in any basis vector

for the system k is raised by one but the number of arcs remains unchanged.
The crucial property that allows us to compare the two Hamiltonians is

the following. When Hk+1 acts on a basis vector obtained from a correspond-
ing Hk vector as we have just described, the only possible new terms that
are generated are off-diagonal terms, which do not contain a bubble and,
hence, are negative. The details of the calculation of these matrix elements
and further applications will appear elsewhere [18].

4 Extensions

A highly desirable extension of our main result, of course, would be the
proof of Conjecture 1 for all ferromagnetic isotropic Heisenberg models on
an arbitrary graph! While we have been able to prove some partial results
for the spin-1/2 model on an arbitrary tree and a few other graphs, we do
not have an argument that works for arbitrary graphs [18]. But there are
a few other directions in which one might extend the ordering of energy
levels property. The aim of this section is to discus two such generalizations.
In the first, the group SU(2) is replaced by the quantum group SUq(2),
0 < q < 1. This only works on the chain and, as far as we are aware, leads
to information about physically interesting models in the case of the spin
1/2 chain, namely the XXZ chain. The second generalization we consider is
isotropic ferromagnetic models with higher order nearest neighbor interaction
terms, such as (Sx · Sx+1)2. For this to be relevant, the spins have to be of
magnitude ≥ 1.

4.1 The Spin 1/2 SUq(2)-symmetric XXZ Chain

It is well-known that the translation invariant spin-1/2 XXZ chain with a
particular choice of boundary fields is SUq(2) invariant [21]. This SUq(2)
symmetry can be exploited in much the same way as the SU(2) symmetry
of the isotropic model [12, 19]. Here we will show how it leads to a natural
SUq(2) analogue of the FOEL property.

The Hamiltonian of the SUq(2)-invariant ferromagnetic spin-1/2 chain of
length L ≥ 2 is given by

HL = −
L−1∑

x=1

[∆−1(S1
xS

1
x+1 + S2

xS
2
x+1) + (S3

xS
3
x+1 − 1/4)] (11)

−A(∆)(S3
L − S3

1).

where ∆ > 1, and

A(∆) =
1
2

√

1 − 1/∆2
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This model commutes with one of the two natural representation of SUq(2)
on (C2)L, with q ∈ (0, 1), such that ∆ = (q+ q−1)/2. Concretely, this means
that HL commutes with the three generators of this representation defined
as follows:

S3 =
L∑

x=1

1l1 ⊗ · · · ⊗ S3
x ⊗ 1lx+1 ⊗ · · · 1lL

S+ =
L∑

x=1

t1 ⊗ · · · ⊗ tx−1 ⊗ S+
x ⊗ 1lx+1 ⊗ · · · 1lL

S− =
L∑

x=1

1l1 ⊗ · · · ⊗ S−
x ⊗ t−1

x+1 ⊗ · · · t−1
L

where

t = q−2S3
=
(
q−1 0
0 q

)

.

The SUq(2) commutation relations are

[S3, S±] = ±S±, [S+, S−] =
q2S

3 − q−2S3

q − q−1
.

Note that one recovers the SU(2) definitions and commutation relations in
the limit q → 1. HL also commutes with the Casimir opeator for SUq(2),
given by

C = S+S− +
(qT )−1 + qT

(q−1 − q)2
, T = t⊗ t⊗ · · · ⊗ t .

The eigenvalues of C are

q−(2S+1) + q2S+1

(q−1 − q)2
, S = 0, 1/2, 1, 3/2, . . .

and play the same role as S for the XXX model, e.g., they label the irreducible
representations of SUq(2). The eigenspaces of C are invariant subspaces of
HL and, as before, we denote the smallest eigenvalues of HL restricted to
these invariant subspaces by E(HL, S). Note that the subspaces depend on
q, but their dimensions are constant for 0 < q ≤ 1.

Theorem 4.

E(HL, S + 1) < E(HL, S), for all S ≤ L/2 − 1 .

The proof of this theorem is identical to the one for the isotropic spin-
1/2 chain up to substitution of the singlet vector ξ by the SUq(2) singlet
ξq = q |+〉 ⊗ |−〉 − |−〉 ⊗ |+〉, and changing the scalar value of the “bubble”
to −(q + q−1). The details are given in [17].
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4.2 Higher Order Interactions

For spins of magnitude greater than 1/2 the Heisenberg interaction is not
the only SU(2) invariant nearest neighbor interactions. It is easy to show
that the most general SU(2) invariant interaction of two spins of magnitudes
s1 and s2, i.e., any hermitian matrix commuting with the representation
D(s1) ⊗ D(s2), is an arbitrary polynomial of degree ≤ 2min{s1, s2} in the
Heisenberg interaction with real coefficients:

h12 =
2 min{s1,s2}∑

m=0

J (m)(S1 · S2)m . (12)

The definition of the FOEL property only uses SU(2)-invariance and there-
fore applies directly to any Hamiltonian for a quantum spin system on a
graph with at each edge an interaction of the form (12). We believe it is
possible to determine the exact range of coupling constants J (m) such that
FOEL holds for spin s chains with translation invariant interactions. So far,
we have carried this out only for the spin-1 chain.

Theorem 5. FOEL holds for the spin-1 chains with Hamiltonian

HL =
L−1∑

x=1

(1 − Sx · Sx+1) + β(1 − Sx · Sx+1)2)

with 0 ≤ β ≤ 1/3. Level crossings occur at β = 1/3 and FOEL does not hold,
in general, for β > 1/3.

The overall method of proof is the same as for the standard Heisenberg
model. Theorem 2 applies directly since only the SU(2) symmetry is used in
its proof. The only difference is in the proof of Proposition 1. The same basis
for the highest weight spaces is used but verifying the signs of the matrix
elements is more involved.

5 Applications

In this section we discuss a number of results that are either consequences of
the FOEL property, or other applications of the properties of the Heisenberg
Hamiltonian that allowed us to prove FOEL.

5.1 Diagonalization at Low Energy

The most direct applications of the FOEL property are its implications for the
low-lying spectrum of the Hamiltonian. FOEL with strict inequality implies
that the ground states are the multiplet of maximal spin which, of course,
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is not a new result. Since the maximal spin multiplet is unique, the first ex-
cited state must belong to less than maximal spin and therefore, by FOEL,
to Smax − 1. In the case of models for which this second eigenvalue can be
computed, such as translation invariant models on a lattice, this is again con-
sistent with a well-known fact, namely that the lowest excitation are simple
spinwaves. But in the case of arbitrary coupling constants and spin magni-
tudes in one dimension it proves that the first excited state is represented
in the subspace of “one overturned spin” (with respect to the fully polarized
ground state), i.e., S3 = S3

max − 1, which is a new result.
More generally, the FOEL property can help with determining the spec-

trum of the Heisenberg model at low energies, whether by numerical or other
means, in the following way. Suppose H is a Hamiltonian with the FOEL
property. Diagonalize H in the subspaces H(Smax−n), for n = 0, 1, . . . N , and
select those eigenvalues that are less or equal than E(H,Smax−N). It is easy
to see that the FOEL property implies that this way you have obtained all
eigenvalues of the full H below ≤ E(H,Smax −N).

This is interesting because you only had to diagonalize the Hamiltonian in
an invariant subspace that is explicitly known (by the representation theory
of SU(2)) and of relatively low dimension: dim(H(Smax−n)) is O(Ln), while
the full Hilbert space has dimension (2J + 1)L for L spin J variables.

5.2 The Ground States of Fixed Magnetization
for the XXZ Chain

The spin 1/2 XXZ ferromagnetic chain with suitable boundary conditions, or
defined on the appropriate infinite-chain Hilbert space has low-energy states
that can be interpreted as well-defined magnetic domains in a background
of opposite magnetization [11, 19]. Using the techniques we have used for
proving FOEL, we can rigorously determine the dispersion relation of a finite
droplet of arbitrary size.

The spin 1/2 XXZ chain can, in principle, be diagonalized using the Bethe
Ansatz [13]. There are two complications that may prevent one from obtaining
the desired information about its spectrum. The first is that a complete
proof of completeness of the Bethe Ansatz eigenstates has been obtained and
published only for the XXX chain (q = ∆ = 1), although the corresponding
result for the XXZ chain has been announced quite some time ago [7]. The
second problem is that the eigenvalues are the solutions of complicated sets
of equations, such that proving statements as the one we discuss here, may
be very hard.

For brevity, let us consider the XXZ Hamiltonian for the inifinite chain
defined on the Hilbert space generated by the orthonormal set of vectors
representing n down spins in an infinite “sea” of up spins, and let us denote
this space by Hn. Define

E(n) = inf spec(H|Hn
) .
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As before, the relation between q ∈ (0, 1) and the anisotropy parameter ∆ in
the XXZ Hamiltonian (11) is given by ∆ = (q + q−1)/2.

Theorem 6. For n ≥ 1, we have

E(n) =
(1 − q2)(1 − qn)
(1 + q2)(1 + qn)

.

Moreover, E(n) belongs to the continuous spectrum and is the bottom of a
band of width

4qn
1 − q2

(1 + qn)(1 − qn)
.

The states corresponding to this band can be interpreted as a droplet of
size n with a definite momentum. The formula for the width indicates that the
“mass” of a droplet diverges as n → ∞. The proof of this result will appear
in a separate paper [16]. If one looks back at the finite-volume eigenvalues
E(Hk, k/2−n) that converge to the bottom of the band in the infinite-volume
limit (k → ∞, n fixed), the property (iv) amounts to property that the ground
state energy of a droplet of fixed size n is strictly monotone decreasing in the
volume. Moreover the finite-volume eigenvalues can be related to E(n), in the
above limit, by using the generalization of the Perron-Frobenius result stated
in Theorem 3.

5.3 Aldous’ Conjecture for the Symmetric
Simple Exclusion Process

The Symmetric Simple Exclusion Process (SSEP) is a Markov process defined
on particle configurations on a finite graph Λ. For our purposes it is convenient
to define the process as a semigroup on HΛ ∼= l2(ΩΛ), where ΩΛ is the space
of configurations η : Λ → {0, 1}. One thinks of η(x) = 1 to indicate the
presence of a particle at the vertex x. Let L be defined in HΛ by the formula

(Lf)(η) =
∑

x∼y

∑

η

Jxy(f(η) − f(ηxy)) (13)

where ηxy denotes the configuration obtained form η by interchanging the
values of η(x) and η(y). The parameters Jxy are positive numbers representing
the jump rates at the edges x ∼ y ∈ Λ.

Clearly, the number of particles is a conserved quantity of the process.
Concretely, this means that HΛ decomposes into a direct sum of invariant
subspaces H(n)

Λ , n = 0, . . . , |Λ|, where H(n)
Λ consists of all functions supported

on configurations η that have extactly n particles, i.e.,
∑

x η(x) = n. 0 is a
simple eigenvalue of each of the restrictions L|

H
(n)
Λ

, and L is non-negative
definite. For each n, the corresponding invariant measure is the uniform dis-
tribution on n-particle configurations.
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Let λ(n) denote the smallest positive eigenvalue of L|
H

(n)
Λ

. Since the dy-

namics of the SSEP is given by the semigroup {e−tL}t≥0, λ(n), determines
the speed of relaxation to the invariant measure.

The following conjecture is known as Aldous’ Conjecture but on his web-
site [1] Aldous states that it arose in a conversation with Diaconis. So, maybe
it should be called the Aldous-Diaconis Conjecture.

Conjecture 2.

λ(n) = λ(1), for all 1 ≤ n ≤ |Λ| − 1 .

Apart from being a striking property, namely that the relaxation rate
should be independent of the number of particles, it could also be very useful.
The SSEP for one particle is just a random walk on the graph Λ, and many
powerful techniques are available to study the relaxation rate of random
walks. In physical terms one would say that the conjectured property reduces
the many-body problem of finding the relaxation rate for n particles to a
single one-particle problem.

Proposition 2. If the ferromagnetic spin-1/2 Heisenberg model with cou-
pling constants Jxy on a graph Λ satisfies FOEL, then Conjecture 2 holds for
the SSEP on Λ with jump rates Jxy/2.

Proof. The proof is based on the unitary equivalence of L and the ferromag-
netic spin 1/2 Heisenberg Hamiltonian H given by

H =
∑

x∼y∈Λ
Jxy

(
1
4
1l − Sx · Sy

)

.

The unitary transformation U : L2(ΩΛ) → HΛ = (C2)⊗|Λ|, that relates L
and H is explicitly given by

L2(ΩΛ) � f �→ Uf = ψ =
∑

η

f(η) |η〉 , where S3
x |η〉 = (ηx − 1/2) |η〉 .

To see this note that

1/4 − Sx · Sy = (1 − txy)/2 ,

where txy interchanges the states at x and y in any tensor product vector.
Then

Hψ =
1
2

∑

x∼y

∑

η

f(η)Jxy(1 − txy) |η〉

=
1
2

∑

x∼y

∑

η

Jxy(f(η) − f(ηxy)) |η〉

=
1
2

∑

η

(Lf)(η) |η〉 .
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Therefore, HUf = ULf , for all f ∈ L2(ΩΛ).
Under this unitary transformation, the particle number becomes the third

component of the total spin:

S3
tot = −|Λ|/2 + n .

The unique invariant measure of SSEP for n particles is the uniform measure
on {η ∈ ΩΛ |

∑

x ηx = n}. The corresponding state for the spin model belongs
to the unique multiplet of maximal total spin, i.e., is a ground state. λ(n) is
the next eigenvalue of H is the same value of total S3. Since the first excited
state of H, by FOEL, is a multiplet of total spin Smax−1, this eigenvalue has
an eigenvalue with any value of S3 in the range −Smax +1, . . . , Smax − 1. We
have Smax = |Λ|/2. Therefore, this corresponds to the range 1 ≤ n ≤ |Λ| − 1.
Hence, λ(n) is independent of n in this range.

In combination with Theorem 1, this proposition has the following corol-
lary.

Corollary 1. Conjecture 2 holds for chains.

Our partial result for trees (not discussed here) also implies Conjecture
2 for arbitrary finite trees as well as some graphs derived from trees. These
cases of the Aldous-Diaconis conjecture were previously know [2, 8], as well
as some other examples where one can compute λ(n) exactly [3–5]. Need-
less to say, a full proof of FOEL, the Aldous-Diaconis Conjecture, or even
a proof for additionial special cases, would be of great interest. An interest-
ing direction for generalization considered by Aldous is to also establish the
analogous formula for the spectral gap for a card-shuffling model with full
SU(n) symmetry, which restricts to the SSEP when one considers cards of
only two colors.
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Abstract. We provide an introduction to the constructive results on interacting
Fermions in two dimensions at thermal equilibrium above the critical temperature
of pair condensation.

1 Introduction

Do interacting Fermions in 2 dimensions (above any low-temperature phase)
resemble more three dimensional Fermions, i.e. the Fermi liquid, or one di-
mensional Fermions, i.e. the Luttinger liquid? The short answer to this con-
troversial question is that it depends on the shape of the Fermi surface. In-
teracting Fermions with a round Fermi surface behave more like three dimen-
sional Fermi liquids, whether interacting Fermions with the square Fermi sur-
face of the Hubbard model at half-filling behave more like a one-dimensional
Luttinger liquid.

This statement has been now proved in full mathematical rigor, beyond
perturbation theory, using the mathematically precise criterion of Salmhofer.
In this lecture we give an introduction to this result, obtained in the series of
papers [1]– [5]. I also take this occasion to thank my colleagues and friends
M. Disertori, S. Afchain and J. Magnen for their very pleasant collaborations
on this subject.

2 Fermi Liquids and Salmhofer’s Criterion

The textbooks definition of condensed matter physicists [6] for Fermi liquid
simply does not work for interacting models which are parity invariant i.e. in
absence of magnetic field. Indeed the textbook definition states that at zero
temperature an interacting Fermi liquid should exhibit a discontinuity in its
density of states at a certain Fermi surface, just like the free Fermi liquid. A
curve in the style of Fig. 1 is usually shown as typical of such a liquid.

Many condensed matter theorists know that this definition is at best a
“figment of imagination” to use Professor Anderson’s words. Indeed Kohn-
Luttinger singularities are known to be generic. This means that for any fixed
bare generic interaction, going towards zero temperature at fixed interaction

V. Rivasseau: Interacting Fermions in 2 Dimensions, Lect. Notes Phys. 690, 171–178 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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Σ

pp
F

Fig. 1. The wrong picture, still found in many textbooks, for the alleged disconti-
nuity of the selfenergy Σ at the Fermi surface pF

cannot probe the famous discontinuity supposed to define the Fermi liquid
phase: the system instead undergoes a transition into a different condensed
phase (such as the BCS phase). To conclude from this fact that interacting
Fermi liquids simply do not exist would be wrong because condensed matter
physicists tell us that they know “deep in their bones” that Fermi liquids do
“exist” physically. . . So a better solution is to work out a correct definition,
that will allow interacting Fermi liquids to exist mathematically as well. Such
a mathematically correct formulation is ultimately needed for the theory
of Fermi liquids just like for thermodynamic limits, Gibbs states or phase
transitions.

It was found by M. Salmhofer a few years ago [7]– [8]. He proposed to
characterize the Fermi liquid behavior by moving a system simultaneously
towards λ = T = 0, so as to remain above any low temperature phase Kohn
Luttinger singularities. This can be accomplished for instance by sending λ
and T both to 0 along a curve λ| log T |p = c, where c is constant and p is an
integer, typically 1 or 2 (see Fig. 2). Of course no singularity will be met, but
Salmhofer proposed to call the system a Fermi liquid if the second derivative
of the self-energy, as function of the momentum, remains bounded along such
a curve [7].

This criterion works at thermal equilibrium and it has been chosen so
that it is not obeyed by the one dimensional Luttinger liquid, for which
indeed this second derivative along such a curve blows up. To discuss the
physical relevance of Salmhofer’s criterion would be too long, and I do not
feel competent at all, in particular for the experimental aspects (is it possible
for example to turn knobs to move at will both temperature and interaction
in as Fermion system? may be yes, by varying temperature and pressure?...)
I just remark that this rigorous criterion is certainly up to now the best for
parity invariant interacting systems, at least because it is the only one.
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−1/λΤ c = e −1/λΤ c = e

T

λa b

Fig. 2. (a): Lowering the temperature at fixed coupling; (b): Lowering the tem-
perature according to Salmhofer

3 The Models

We consider a gas of Fermions in thermal equilibrium at temperature T , with
coupling constant λ. The free propagator for these models is

Ĉa,b(k) = δa,b
1

ik0 − e(
−→
k )

, (1)

with e(
−→
k ) = ε(

−→
k ) − µ, ε(

−→
k ) being the kinetic energy and µ the chemical

potential. The relevant values for k0 are discrete and called the Matsubara
frequencies :

k0 =
(
π

β

)

(2n+ 1), n ∈ Z , (2)

where β = (kT )−1.
When T → 0+ (which means β → +∞), k0 becomes a continuous variable,

the corresponding discrete sum becomes an integral, and the corresponding
propagator C0(x) becomes singular on the Fermi surface defined by k0 = 0
and e(k) = 0. This Fermi surface depends on the kinetic energy ε(

−→
k ) of the

model. For rotation invariant models, ε(
−→
k ) =

−→
k 2/2m and the Fermi surface

is a circle in two dimensions and a sphere in three dimensions, with radius√
2mµ. These two rotation invariant models, or jellium models are respec-

tively nicknamed J2 and J3. For the half-filled Hubbard model, nicknamed
H2, x lives on the lattice ZZ2, and ε(

−→
k ) = cos k1 +cos k2 so that at µ = 0 the

Fermi surface is a square of side size
√

2π, joining the points (±π, 0), (0,±π)
in the first Brillouin zone.

It is also possible to interpolate continuously between H2 and J2 by vary-
ing the filling factor of the Hubbard model. Lattice models with next-nearest
neighbor hopping are also interesting.

In contrast with the propagator, the interaction is almost unique. Indeed
we are interested in long-range physics, so we should start from a quasi-local
bare interaction. But there is a unique exactly local such interaction, namely

SV = λ

∫

V

d3x




∑

a∈{↑,↓}
ψa(x)ψa(x)





2

, (3)
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where V := [−β, β[×V ′ and V ′ is an auxiliary volume cutoff in two dimen-
sional space, that will be sent to infinity in the thermodynamic limit. Indeed
any local polynomial of higher degree is zero since Fermionic fields anticom-
mute.

4 A Brief Review of Rigorous Results

What did the programs of rigorous mathematical study of interacting Fermi
systems accomplish until now? Recall that in dimension 1 there is neither
superconductivity nor extended Fermi surface, and Fermion systems have
been proved to exhibit Luttinger liquid behavior [9]. The initial goal of the
studies in two or three dimensions was to understand the low temperature
phase of these systems, and in particular to build a rigorous constructive BCS
theory of superconductivity. The mechanism for the formation of Cooper
pairs and the main technical tool to use (namely the corresponding 1/N
expansion, where N is the number of sectors which proliferate near the Fermi
surface at low temperatures) have been identified [10]. But the goal of building
a completely rigorous BCS theory ab initio remains elusive because of the
technicalities involved with the constructive control of continuous symmetry
breaking.

So the initial goal was replaced with a more modest one, still important in
view of the controversies over the nature of two dimensional “Fermi liquids”
[11], namely the rigorous control of what occurs before pair formation. The
last decade has seen excellent progress in this direction.

As is well known, sufficiently high magnetic field or temperature are the
two different ways to break the Cooper pairs and prevent superconductiv-
ity. Accordingly two approaches were devised for the construction of “Fermi
liquids”. One is based on the use of non-parity invariant Fermi surfaces to
prevent pair formation. These surfaces occur physically when generic mag-
netic fields are applied to two dimensional Fermi systems. The other is based
on Salmhofer’s criterion [7], in which temperature is the cutoff which prevents
pair formation.

In a large series of papers [12], the construction of two dimensional Fermi
liquids for a wide class of non-parity invariant Fermi surfaces has been com-
pleted in great detail by Feldman, Knörrer and Trubowitz. These papers
establish Fermi liquid behavior in the traditional sense of physics textbooks,
namely as a jump of the density of states at the Fermi surface at zero temper-
ature, but they do not apply to the simplest Fermi surfaces, such as circles
or squares, which are parity invariant.

An other program in recent years was to explore which models satisfy
Salmhofer’s criterion. Of particular interest to us are the three most “canon-
ical” models in more than one dimension namely:

• the jellium model in two dimensions, with circular Fermi surface, nick-
named J2,
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• the half-filled Hubbard model in two dimensions, with square Fermi surface,
nicknamed H2,

• and the jellium model in three dimensions, with spherical Fermi surface,
nicknamed J3.

The study of each model has been divided into two main steps of roughly
equal difficulty, the control of convergent contributions and the renormal-
ization of the two point functions. In this sense, five of the six steps of our
program are now completed. J2 is a Fermi liquid in the sense of Salmhofer [1]–
[2],H2 is not, and is a Luttinger liquid with logarithmic corrections, according
to [3, 4] and [5].

Results similar to [1] - [2] have been also obtained for more general con-
vex curves not necessarily rotation invariant such as those of the Hubbard
model at low filling, where the Fermi surface becomes more and more circu-
lar, including an improved treatment of the four point functions leading to
better constants [13]. Therefore as the filling factor of the Hubbard model
is moved from half-filling to low filling, we conclude that there must be a
crossover from Luttinger liquid behavior to Fermi liquid behavior. This solves
the controversy [11] over the Luttinger or Fermi nature of two-dimensional
many-Fermion systems above their critical temperature.

Up to now only the convergent contributions of J3, which is almost cer-
tainly a Fermi liquid, have been controlled [14]. The renormalization of the
two point functions for J3, the last sixth of our program, remains still to be
done. This last part is difficult since the cutoffs used in [14] do not conserve
momentum. This means that the two point functions that have to be renor-
malized in this formalism are not automatically one particle irreducible, as
is the case both in [2] and in this paper. This complicates their analysis.

5 Multiscale Analysis, Angular Sectors

For any two-dimensional model built until now in the constructive sense,
the strategy is the same. It is based on some kind of multiscale expansion,
which keeps a large fraction of the theory in unexpanded determinants. The
global bound on these determinant (using determinant inequalities such as
Gram inequality) is much better than if the determinant was expanded into
Feynman graphs which would then be bounded one by one, and the bounds
summed. The bound obtained in this way would simply diverge at large order
(i.e. not prove any analyticity at all in the coupling constant) simply because
there are too many Feynman graphs at large order. But the divergence of
a bound does not mean the divergence of the true quantity if the bound is
bad. Constructive analysis, which “keeps loops unexpanded” is the correct
way to obtain better bounds, which do prove that the true series in fact does
not diverge, i.e. has a finite convergence radius in the coupling constant. This
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radius howerver shrink when the temperature goes to 0, and a good construc-
tive analysis should establish the correct shrinking rate, which is logarithmic.
This is were multiscale rather than single scale constructive analysis becomes
necessary.

The basic idea of the multiscale analysis is to slice the propagator accord-
ing to the size of its denominator so that the slice number i corresponds to
|k0 − e(

−→
k )| �M−i, where M is some fixed constant.

This multiscale analysis is supplemented within each scale by an angular
“sector analysis”. The number of sectors should be kept as small as possible,
so each sector should be as large as possible in the directions tangent to the
Fermi surface in three dimensions, or to the Fermi curve in two dimensions.
What limits however the size of these sectors is the curvature of the surface,
so that stationary phase method could still relate the spatial decay of a
propagator within a sector to its dual size in momentum space. In the case of
a circle, the number of sectors at distance ε of the singularity grows therefore
at least like ε−1/2, hence like a power of ε. However for the half-filled Hubbard
model, since the curvature is “concentrated at the corners” the number of
sectors grows only like | log ε|. In one dimension there are really only two
sectors since the Fermi singularity is made of two points. A logarithm is
closer to a constant than to a power; this observation is the main reason for
which the half-filled Hubbard model is closer to the one-dimensional Luttinger
liquid than to the three dimensional Fermi liquid.

Momentum conservation rules for sectors which meet at a given vertex
in general are needed to fix the correct power counting of the subgraphs of
the model. In the Hubbard case at half filling, these rules are needed only
to fix the correct logarithmic power counting, since the growth of sectors
near the singularity is only logarithmic. In both cases the net effect in two
dimensions of these conservation rules is to roughly identify two pairs of
“conserved” sectors at any vertex, so that in each slice the model resembles
an N -component vector model, where N is the number of sectors in the slice.

The multiscale renormalization group analysis of the model then consists
essentially in selecting, for any graph, a tree which is a subtree in each of the
“quasi-local” connected components of the graph according to the momentum
slicing. These connected components are those for which all internal lines are
farther from the Fermi surface than all external lines. The selection of this
tree can be performed in a constructive manner, keeping the remaining loop
fields in a determinant. The combinatoric difficulty related to the fact that a
graph contains many trees has been tackled once and for all thanks to forest
formulas such as those of [15].

6 One and Two Particle Irreducible Expansions

Salmhofer’s criterion is stated for the self-energy, i.e. the sum of all one-
particle irreducible graphs for the two point function. Its study requires the
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correct renormalization of these contributions. Since angular sectors in a
graph may vary from one propagator to the next in a graph, and since differ-
ent sectors have different decays in different directions, we are in a delicate
situation. In order to prove that renormalization indeed does the good that
it is supposed to do, one cannot simply rely on the connectedness of these
self-energy graphs, but one must use their particle irreducibility explicitly.

So the proof requires a constructive particle irreducible analysis of the
self-energy. The following theorem summarizes the results of [1]-DR2

Theorem 1. The radius of convergence of the jellium two-dimensional model
perturbative series for any thermodynamic function is at least c/| log T |, where
T is the temperature and c some numerical constant. As T and λ jointly tend
to 0 in this domain, the self-energy and its first two momentum derivatives
remain uniformly bounded so that the model is a Fermi liquid in the sense of
Salmhofer.

In the case of the jellium model J2, this analysis can be performed at the
level of one-particle irreducible graphs [2]. The half-filled Hubbard model,
however, is more difficult. It came as a surprise to us that although there is no
real divergence of the self-energy (the associated counterterm is zero thanks
to the particle hole symmetry of the model at half-filling) one really needs
a two-particle and one-vertex irreducible constructive analysis to establish
the necessary constructive bounds on the self-energy and its derivatives [4].
For parity reasons, the self-energy graphs of the model are in fact not only
one-particle irreducible but also two particle and one vertex irreducible, so
that this analysis is possible.

This analysis according to the line form of Menger’s theorem ( [16]) leads
to the explicit construction of three line-disjoint paths for every self-energy
contribution, in a way compatible with constructive bounds. On top of that
analysis, another one which is scale-dependent is performed: after reduction
of some maximal subsets provided by the scale analysis, two vertex-disjoint
paths are selected in every self-energy contribution. This requires a second
use of Menger’s theorem, now in the vertex form. This construction allows to
improve the power counting for two point subgraphs, exploiting the particle-
hole symmetry of the theory at half-filling, and leads to the desired analyticity
result.

Finally an upper bound for the self energy second derivative is combined
with a lower bound for the explicit leading self energy Feynman graph [5].
This completes the proof that the Hubbard model violates Salmhofer’s crite-
rion, hence is not a Fermi liquid, in contrast with the jellium two dimensional
model. More precisely the following theorem summarizes the results of [3–5].

Theorem 2. The radius of convergence of the Hubbard model perturbative
series at half-filling is at least c/ log2 T , where T is the temperature and c
some numerical constant. As T and λ jointly tend to 0 in this domain, the
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self-energy of the model does not display the properties of a Fermi liquid in
the sense of Salmhofer, since the second derivative is not uniformly bounded.
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6. See e.g. E. Fradkin, “Field Theories of Condensed Matter Systems”, Frontiers
in Physics, 1991

7. M. Salmhofer, Continuous renormalization for Fermions and Fermi liquid the-
ory, Commun. Math. Phys. 194, 249 (1998).

8. M. Salmhofer, Renormalization, an introduction, Springer Verlag, 1999.
9. G. Benfatto and G. Gallavotti, Renormalization Group, Physics Notes,

Chap. 11 and references therein, Vol. 1 Princeton University Press, 1995
10. J. Feldman, J. Magnen, V. Rivasseau and E. Trubowitz, An Intrinsic 1/N Ex-

pansion for Many Fermion System, Europhys. Letters 24, 437 (1993).

11. P.W. Anderson, Luttinger liquid behavior of the normal metallic state of the
2D Hubbard model, Phys Rev Lett. 64 1839–1841 (1990).

12. Joel Feldman, H. Knörrer and E. Trubowitz, A two dimensional Fermi Liquid,
series of papers in Commun. Math. Phys. 247, 1–319, 2004 and Reviews in
Math. Physics, 15, 9, 949–1169, (2003).

13. G. Benfatto, A. Giuliani and V. Mastropietro, Low temperature Analysis of
Two-Dimensional Fermi Systems with Symmetric Fermi surface, Ann. Henri
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Abstract. Let R
ν � ξ → Σess(ξ) denote the bottom of the essential spectrum for

the fiber Hamiltonians of the translation invariant massive Nelson model, which
describes a ν-dimensional electron linearly coupled to a scalar massive radiation
field. We prove that, away from a locally finite set, Σess is an analytic function of
total momentum.

1 The Model and the Result

Let hph := L2(Rνk) and F = Γ (hph) denote the bosonic Fock space con-
structed from hph. We write p = −i∇x for the momentum operator in
K := L2(Rνx). The translation invariant Nelson Hamiltonian describing a
ν-dimensional electron (or positron) linearly coupled to a massive scalar ra-
diation field has the form

H := Ω(p) ⊗ 1lF + 1lK ⊗ dΓ (ω) + V , on K ⊗ F ,

where

V :=
∫

Rν

{

e−ik·xv(k) 1lK ⊗ a∗(k) + eik·x v(k) 1lK ⊗ a(k)
}

dk .

We assume that the form factor v satisfies

v ∈ L2(Rνk) , v real valued , v �= 0 a.e.
and ∀O ∈ O(ν) : v(Ok) = v(k) a.e. ,

(1)

which implies a UV-cutoff. Here O(ν) denotes the orthogonal group. The
physically interesting choices for the dispersion relations Ω and ω are Ω(η) =
η2/2M , Ω(η) =

√
η2 +M2 and ω(k) =

√
k2 +m2, where M,m > 0 are the

electron and boson masses. We will however work with general forms of both
Ω and ω. As for ω, this is partly motivated by the similarity with the Polaron
model, cf. [5,11], where ω is not explicitly known. We make no attempt here
to say anything about the Polaron model.

The operator H commutes with the total momentum p⊗1lF +1lK⊗dΓ (k)
and hence fibers as H ∼

∮

Rν H(ξ)dξ, where the fiber Hamiltonians H(ξ),
ξ ∈ R

ν , are operators on F given by

J.S. Møller: On the Essential Spectrum of the Translation Invariant Nelson Model, Lect.
Notes Phys. 690, 179–195 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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H(ξ) = H0(ξ) + Φ(v) where H0(ξ) = dΓ (ω) + Ω(ξ − dΓ (k)) (2)

and the interaction is

Φ(v) =
∫

Rν

{
v(k)a∗(k) + v(k)a(k)

}
dk . (3)

We formulate precise assumptions on Ω and ω, which are satisfied by the
examples mentioned above. We use the standard notation 〈t〉 := (1 + t2)1/2.

Condition 1 (The particle dispersion relation) Let Ω ∈ C∞(Rν).
There exists sΩ ∈ {0, 1, 2} such that

(i) There exists C > 0 such that Ω(η) ≥ C−1〈η〉sΩ − C.
(ii) For any multi-index α there exists Cα such that |∂αΩ(η)| ≤ Cα〈η〉sΩ−|α|.
(iii) Ω is rotation invariant, i.e., Ω(Oη) = Ω(η), for all O ∈ O(ν).
(iv) The function η → Ω(η) is real analytic.

Condition 2 (The photon dispersion relation) Let ω ∈ C∞(Rν) satisfy

(i) There exists m > 0, the photon mass, such that infk∈Rν ω(k) = ω(0) =
m.

(ii) ω(k) → ∞, in the limit |k| → ∞.
(iii) There exist sω ≥ 0, Cω > 0, and for any multi-index α with |α| ≥ 1, a

Cα such that ω(k) ≥ C−1
ω 〈k〉sω − Cω and |∂αk ω(k)| ≤ Cα〈k〉sω−|α|.

(iv) ω is rotation invariant, i.e., ω(Oη) = ω(η), for all O ∈ O(ν).
(v) ω is real analytic.
(vi) ω is strictly subadditive, i.e. ω(k1) + ω(k2) > ω(k1 + k2) for all k1, k2 ∈

R
ν .

Remarks: (1) The assumption that the photons are massive is essential.
(2) One could weaken the assumption v ∈ L2(Rν) by taking instead
v/

√
ω ∈ L2(Rν). This is a weaker ultraviolet condition, which still allows

for the construction of the Hamiltonian. See [2].
(3) The subadditivity assumption is discussed at the end of this section.
(4) Condition 2 vi) follows from subadditivity ω(k1) + ω(k2) ≥ ω(k1 + k2)
together with Condition 2 (i), (iv), and (v).
(5) The assumptions (1), Condition 1 (ii), Condition 2 (i), (ii), and iii) can
be relaxed, cf. [10].

We introduce the bottom of the spectrum and essential spectrum as func-
tions of total momentum

Σ0(ξ) := inf σ
(
H(ξ)

)
and Σess(ξ) := inf σess

(
H(ξ)

)
.

The energy of a system of n non-interacting bosons, with momenta k ∈ R
nν ,

k = (k1, . . . , kn), and one interacting electron with momentum ξ−k(n), where
k(n) = k1 + · · · + kn, is
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Σ
(n)
0 (ξ; k) := Σ0

(
ξ − k(n)

)
+

n∑

j=1

ω(kj) (4)

and the smallest of such energies

Σ
(n)
0 (ξ) := inf

k∈Rnν
Σ

(n)
0 (ξ; k) , (5)

which is a threshold energy for the model. Due to the assumption of strict
subadditivity of ω, Condition 2 (vi), we have

Σ
(n)
0 (ξ) < Σ

(n′)
0 (ξ) , for n < n′ . (6)

The function Σess can be expressed in terms of Σ0

Σess(ξ) = Σ
(1)
0 (ξ) . (7)

This is the content of the HVZ theorem, see [9, Theorem 1.2 and Corollary 1.4]
and [11, Sect. 4]. Write I0 := {ξ ∈ R

ν |Σ0(ξ) < Σess(ξ)} (ξ’s with an isolated
groundstate) and for ξ ∈ R

ν : I(1)
0 (ξ) := {k ∈ R

ν : ξ − k ∈ I0}.
We recall thatH(ξ) is self-adjoint on D = D(H0(ξ)), which is independent

of ξ. The functions ξ → Σ0(ξ), Σess(ξ), Σ
(n)
0 (ξ) are Lipschitz continuous,

rotation invariant, and go to infinity at infinity. For a treatment of the second
quantization formalism used in the formulation of the model see [1] or the
brief overviews given in [4] and [9]. See also the recent monograph [12] by
Spohn, for up to date material on models of non-relativistic QED.

The authors talk at the QMATH9 meeting, was devoted to an overview
of results for the spectral functions introduced above. Drawing mostly on
work of Fröhlich [6, 7], Spohn [11], and the author [9]. One of these results,
[9, Theorem 1.9], states that R � t → Σess(tu) is a real analytic function
away from a closed countable set, under the additional assumption that ω is
also convex. Here u is an arbitrary unit vector. This prompted the following
question from Heinz Siedentop: “Is this optimal?”. Here is the answer:

Theorem 1. Fix a unit vector u ∈ R
ν . Suppose (1) and Conditions 1 and 2.

Then there exists a locally finite set S ⊂ R such that R\S � t → Σess(tu) is
analytic. For any connected component I = (a, b) of R\S we have either: Σess

is constant on I, or there exists an analytic function I � t→ θ(t) ∈ I(1)
0 (tu)

such that for t ∈ I

Σess

(
tu
)

= Σ
(1)
0

(
tu; θ(t)u

)
and ∇Σess

(
tu
)

= ∇ω
(
θ(t)u

)
.

In the latter case, there furthermore exist integers 1 ≤ p, q <∞ such that the
functions (a, a+ δ) � t→ θ(a+ (t− a)p)) and (b− δ, b) � t→ θ(b− (b− t)q)
extend analytically through a respectively b. (Here δ is chosen such that a +
δp, b− δq ∈ I.)
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Remarks: (1) The part of (1) requiring v to be real is an input to a Perron-
Frobenius argument, see [7, Sect. 2.4] and [9, Sect. 3.3], which ensures that
the groundstate of each H(ξ) is non-degenerate. This, together with analytic
perturbation theory, implies that ξ → Σ0(ξ) is analytic in I0, see [7, Theorem
3.6]. This is in fact the information we need to make the proof of Theorem 1
work. Hence the conclusion of the theorem remains true also for the uncoupled
system (v ≡ 0) although (1) is not satisfied in this case.
(2) If subadditivity of ω is not assumed we are faced with two problems:
(I) We would need to understand the breakup of degenerate critical points
of k → Σ

(n)
0 (ξ; k) for any n, not just n = 1. This is a much more difficult

problem (but probably doable). (II) The crossing of thresholds Σ(n)
0 (ξ) may

be associated with the disappearance of the groundstate Σ0(ξ) into the es-
sential spectrum. The strategy of the proof below would require that Σ0(ξ)
(suitably reparameterized as in Theorem (1) continues analytically into the
essential spectrum. This is beyond current technology.

In Sect. 2 below, we study analytic functions of two complex variables
which are of the form of f(x− y) + g(y), cf. the definition (4) of Σ(1)

0 (·; ·). In
Sect. 3 we apply the results of Sect. 2 to prove Theorem 1. In Appendix A
we recall basic properties of Riemannian covering spaces.

2 A Complex Function of Two Variables

We write (Rp, πp) for the p’th Riemannian cover over C\{0}. See Appendix A.
For z ∈ C and r > 0 we introduce the notation

D(z, r) := {z′ ∈ C : |z − z′| < r} , D′(z, r) := D(z, r)\{z} ,
D′
p(r) := π−1

p (D′(0, r)) ⊂ Rp .

We furthermore use the abbreviations D(r) ≡ D(0, r) and D′(r) = D′(0, r).
Fix x0, y0 ∈ C and r0 > 0. Let f, g be analytic in D(x0 − y0, 2r0) and

D(y0, r0) respectively. We define:

H(x, y) := f(x − y) + g(y) for (x, y) ∈ D := D(x0, r0) × D(y0, r0) .

The function H is an analytic function of two variables in the polydisc D.
We suppose that y → H(x0, y) has a critical point at y = y0, that is:

(∂yH)(x0, y0) = 0 . (8)

The aim of this section is to catalogue the breakup of the critical point, count-
ing multiplicity, when x0 is replaced by an x near x0. We wish to determine
the sets

Θ(x) := {y ∈ D(y0, ry) : (∂yH)(x, y) = 0} , (9)

for x ∈ D′(x0, rx) and rx, ry small enough.
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We write f and g as convergent power series in the discs D(x0 − y0, 2r0)
and D(y0, r0) respectively

f(z) =
∞∑

k=0

fk(z − (x0 − y0))k and g(z) =
∞∑

k=0

gk(y − y0)k . (10)

We can without loss of generality assume f0 = g0 = 0, and (8) implies f1 = g1,
and hence we can in addition assume f1 = g1 = 0. (The critical points are
independent of f0, f1, g0 and g1). To summarize

f0 = f1 = g0 = g1 = 0 . (11)

For a function h, analytic in an open set U ⊂ C, we recall that h has a
zero of order k at z0 if (z − z0)−kh is analytic near z0, and (z − z0)−k−1h is
singular at z0. Equivalently h has a zero of order k at z0 if ∂

�h
∂z� (z0) = 0, for

0 ≤ � < k, and ∂kh
∂zk (z0) �= 0. We will use the following notation for roots of

unity. For k ≥ 1, we write the k solutions of αk = 1 as

αk� := ei2π�/k, for � ∈ {1, . . . , k} . (12)

By the p’th root of a complex non-zero constant C ∼ (|C|, arg(C)), where
0 ≤ arg(C) < 2π, we understand

C1/p := |C|1/p ei argC/p . (13)

In the following we write κH for the order of the zero y0 for the analytic
function (∂yH)(x0, ·), κg for the order of the zero y0 of y → g(y), and κf
for the order of the zero x0 − y0 of z → f(z) (recall (11)). We furthermore
abbreviate

F :=
∂κf f
∂zκf (x0 − y0)

(κf − 1)!
= κffκf

, G :=
∂κg g
∂zκg (y0)
(κg − 1)!

= κggκg
, (14)

M :=
(∂κH+1
y H)(x0, y0)

κH !
= (κH + 1)((−1)κH+1fκH+1 + gκH+1) �= 0 .

Proposition 1. Let f, g, x0, y0 and r0 be as above, with κg, κf , κH < ∞.
Then there exist 0 < rx, ry ≤ r0, such that for x ∈ D′(x0, rx) the set of
solutions Θ(x) ⊂ D′(y0, ry) consists of precisely κH distinct points, all of
which are zeroes of order 1 for (∂yH)(x, ·). We have the following description
of Θ(x):

I The case κg ≤ κH : There are analytic functions θ� : D(rx) → D(ry),
� ∈ {1, . . . , κg − 2}, and θ : D′

κH−κg+2(rx) → D′(ry), such that Θ(x) =

y0+(∪κg−2
�=1 {θ�(x−x0)})∪θ(π−1

κH−κg+2({x−x0})). We have the asymptotics
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θ�(x) =
α
κg−1
�

α
κg−1
� − 1

x + O
(
|x|2

)
, � ∈ {1, . . . , κg − 2} ,

θ(x) = CIx1/(κH−κg+2) + O
(
|x|−2/(κH−κg+2)

)

where CI = [−(κg − 1)G/M ]1/(κH−κg+2).
II The case κg = κH +1: Here κf ≥ κg and we write κf −1 = pκH + q and
d = (q, κH) (the greatest common divisor), where p ≥ 1, 0 ≤ q < κH .
There exists d analytic functions θ� : D′

κH/d
(rx) → D′(ry) such that

Θ(x) = y0 +∪d�=1θ�(π
−1
κH/d

({x−x0})). We have two possible asymptotics:
If κf = κg (and hence q = 0, d = κH , and D′

1(rx) ≡ D′(rx)) then

θ�(x) =
CIIα

κH

�

CIIα
κH

� − 1
x + O

(
|x|2

)
, � ∈ {1, . . . , κH} ,

where CII = ((−1)κHF/G)1/κH �= 1. If κf > κg then

θ�(x) = C ′
II α

d
� πκH/d(x)p

(
x

1
κH /d

) q
d + O

(
|x|κf/κH

)
, � ∈ {1, . . . , d} ,

where C ′
II = (F/G)1/κH .

III The case κg > κH + 1: Write κg − 1 = pκH + q and d = (κH , q), where
p ≥ 1 and 0 ≤ q < κH . There are d analytic functions θ� : D′

κH/d
(rx) →

D′(ry) such that Θ(x) = y0 + ∪d�=1θ�(π
−1
κH/d,x0

({x − x0})). We have the
asymptotics, with CIII = (−G/M)1/κH and � ∈ {1, . . . , d},

θ�(x) = πκH/d(x) + CIII α
d
� πκH/d(x)p

(
x

1
κH /d

) q
d + O

(
|x|κg/κH

)
.

If q = 0 and hence d = κH in II and III, then the maps θ�, a priori defined on
D′

1(rx) ≡ D′(0, rx), extend to analytic maps from D(0, rx) by the prescription
θ�(0) := y0. (Note the convention (0, p) = p for p �= 0.)

Remarks: (1) If κf = ∞, then H(x, y) = g(y), and θ(x) ≡ y0 is the solution
to (8). If κg = ∞ then g = 0 and θ(x) = x is the solution to (8). If κH = ∞
then H(x0, y) ≡ H(x0, y0) and hence g(y) = H(x0, y0) − f(x− y).
(2) If κH = 1 We get an analytic solution x→ θ(x) of (8) from the implicit
function theorem, cf. [8, Theorem I.B.4]. Proposition 1 II and III then states
the possible asymptotics.
(3) A particular consequence is that degenerate critical points are isolated.
(4) In the proof we handle the error term by a fixed point argument. This
implies the following important observation. If x0, y0 ∈ R and f and g are
real analytic. Then a branch R\{x0} � x→ θ(x) ∈ Θ(x) is real valued if and
only if θ(x) is real to leading order (the order needed to uniquely determine
θ.)

Proof. The plan of the proof is as follows. First we identify enough terms in
an asymptotic expansion θ(x) = θ̃(x) + z(x) of the critical points so that we
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can separate them. Secondly we use a fixed point argument to show that the
remainder, x→ z(x), vanishes at a faster rate than the leading order term θ̃.
Note that it is a general result that for x close to x0, ∂yH(x, ·) has precisely
κH zeroes counting their orders. See [8, Lemma 1.B.3]. Our task is to account
for those κH zeroes. We remark that we could have simply postulated the
form of the leading order terms θ̃, but at the cost of transparency.

We can assume without loss of generality that x0 = y0 = 0. We wish to
solve, for a fixed x in a neighbourhood of 0,

(∂yH)(x, y) = 0 . (15)

We begin by collecting some facts. Compute

∀� : (∂�yH)(0, 0) = (−1)�
∂�f

∂y�
(0) +

∂�g

∂y�
(0) . (16)

We thus find from (8) and (10), recall (11), that

∀ � ≤ κH : (−1)�+1f� = g� , (17)

and from the definition of κg that

∀ � < min{κH + 1, κg} : f� = g� = 0 . (18)

Below we will use the following notation for remainders in expansions.
Let h be an analytic function in a disc D(z0, rh) with expansion h(z) =
∑∞
k=0 hk(z − z0)k. We write for z ∈ D(z0, rh)

R�h(z) :=
∞∑

k=�+1

k hk (z − z0)k−�−1 . (19)

Note that R�h are bounded analytic functions in D(z0, rh/2).
We separate into the three cases I, II, and III.
Case I (κg ≤ κH): Expand the left-hand side of (15), using (17), (18), and

the notation (19):

(∂yH)(x, y) =
κH+1∑

�=κg

�
[
− f� (x− y)�−1 + g� y

�−1
]

− RκH+1
f (x− y) (x− y)κH+1 + RκH+1

g (y) yκH+1

=
κH∑

�=κg

� g�
[
y�−1 − (y − x)�−1

]
(20)

+ M yκH + (κH + 1) fκH+1((x− y)κH − yκH )
− RκH+1

f (x− y) (x− y)κH+1 + RκH+1
g (y) yκH+1 .
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First we look for solutions to (15) with asymptotics θ(x) ∼ |x|. That is, the
leading order term should solve yκg−1− (y−x)κg−1 = 0, i.e. if we put y = βx
then β should solve (β/(β − 1))κg−1 = 1. This gives the following κg − 2
solutions for β

β� =
α
κg−1
�

α
κg−1
� − 1

, for � ∈ {1, κg − 2} . (21)

Note that ακg−1
κg−1 = 1 does not give rise to a solution. We thus find in this

case θ̃�(x) = β�x. Recall the notation αk� from (12).
Secondly we look for solutions to (15) with asymptotics θ(x) ∼ |x|ρ for

some 0 < ρ < 1. Expanding the terms (y−x)�−1 in binomial series we identify
the highest order terms and are led to require (κg− 1)Gxyκg−2 +MyκH = 0.
This gives the equation yκH−κg+2 = −[(κg − 1)G/M ]x. (We note that the
κg−2 zero solutions are the ones we identified in the first step above.) We use
the map RpI

� x → x1/pI introduced in (32), pI = κH − κg + 2, to express
the solution

θ(x) = CIx1/pI , where CI = [−(κg − 1)G/M ]1/pI . (22)

Case II (κg = κH + 1): We expand again

(∂yH)(x, y) = −F (x− y)κf−1 + Gyκg−1

− R
κf+1
f (x− y) (x− y)κf + Rκg+1

g (y) yκg . (23)

First we consider the case κf = κg = κH + 1. This is similar to the first
step above. We look for solutions with the asymptotics θ(x) ∼ |x|, and put
θ̃(x) = βx. We get the equation (−1)κH+1F (β − 1)κH + GβκH = 0. This
leads us to consider the equation (β/(β − 1))κH = (−1)κHF/G, which has
κH solutions

β� =
CIIα

κH

�

CIIα
κH

� − 1
, for � ∈ {1, . . . , κH} . (24)

Here CII := ((−1)κHF/G)1/κH . We note that since (−1)κH+1F+G = M �= 0,
cf. (14), we must have 0 < arg(CII) < 2π/κH . This observation ensures that
we avoid any singularity in the case |F | = |G|.

Secondly we assume κf > κg and look for solutions to (15) with asymp-
totics θ(x) ∼ |x|ρ, for some ρ > 1. This leads to the equation

−F xκf−1 + Gyκg−1 = 0 .

(Here M = G.) Let κf − 1 = pκH + q and d = (q, κH) as in the statement of
the proposition. We express the solutions as d analytic maps from RκH/d to
C\{0}
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θ̃�(x) = C ′
II α

d
� πκH/d(x)p (x1/(κH/d))q/d , C ′

II = (F/G)1/κH . (25)

Case III (κg > κH + 1): Here we must have κf = κH + 1. We write down
the expansion

(∂yH)(x, y) = M (y − x)κH + Gyκg−1

− RκH+2
f (x− y) (x− y)κH+1 + Rκg+1

g (y) yκg .

Here the asymptotics is the same to leading order, namely y ∼ x. Write
θ̃(x) = x+ θ̂, and look for θ̂ with the asymptotics θ̂ ∼ |x|ρ, ρ > 1. This gives
the equation for θ̂

M θ̂κH + Gxκg−1 = 0 ,

As above let κg − 1 = pκH + q and d = (q, κH) . We express the solutions as
d analytic maps from RκH/d to C\{0}, with CIII = (−G/M)1/κH ,

θ̃�(x) = πκH/d(x) + CIII α
d
� πκH/d(x)p (x1/(κH/d))q/d . (26)

We have now determined the leading order term in all cases. We proceed
to show by a fixed point argument that indeed there is a zero of order 1 near
each of the terms identified above. We introduce function spaces

Zp(ρ,C) :=
{
z ∈ C(D′

p(rx) ; C) | |z(x)| ≤ C |x|ρ
}
,

equipped with sup-norm. If p = 1 we identify D′
1(rx) ≡ D′(rx). We now

describe the procedure which we follow below, so as to cut short the individual
arguments. First we write the actual branch of critical points as a sum θ(x) =
θ̃(x) + z(x), where θ̃ is the leading order term as derived above and z is an
element of a suitable Zp. We plug this into an expansion of (∂yH)(x, y) and
identify leading order terms. These are of two types. One is linear in z and
the others are independent of z. The term linear in z is used to construct
maps T on Zp, by (Tz)(x) = z(x) − (∂yH)(x, θ̃(x) + z(x))/h(x), if hz is
the term linear in z. The remaining leading order terms now become leading
order terms for Tz and their decay determine the decay of the remainder and
hence ρ. The constant C is chosen such that T maps Zp into itself. Finally,
since terms in Tz depending on z are of higher order, we can choose rx small
enough such that T becomes a contraction. Its unique fixed point z0 is the
desired correction to the leading order contribution found above. Note that
a fixed point satisfies (∂yH)(x, θ̃(x) + z0(x)) = 0.

Case I: Write θ�(x) = β�x+ z(x), cf. (21), and look for z vanishing faster
than |x| at 0. The leading order term linear in z in (20) is

(κg − 1)G
[
(β�x)κg−2 − ((β� − 1)x)κg−2

]
z = (κg − 1)Gγ� xκg−2 z

A computation yields γ� := β
κg−2
� −(β�−1)κg−2 �= 0. Define maps on Z1(2, C)

(T�z)(x) := z(x) − (∂yH)(x, β�x+ z(x))
(κg − 1)Gγ�xκg−2

.
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The contributions to T�z which scale as |x|2 (the slowest appearing rate) are

−
(κg + 1)gκg+1

[
β
κg

� − (β� − 1)κg
]

(κg − 1)Gγ�
x2 , for κg < κH ,

−MβκH

� + (κH + 1)fκH+1[(1 − β�)κH − βκH

� ]
(κg − 1)Gγ�

x2 , for κg = κH .

We now choose C large enough such that the norm of the coefficients above
are less than C. Choosing rx sufficiently small turns T� into contractions on
Z1(2, C).

Now write θ(x) = CIx1/pI + z(x) where z ∈ ZpI
(κg/pI , C). The term in

(20) which is linear in z and of leading order is
[
(κg − 2) (κg − 1)GπpI

(x) (CIx1/pI )κg−3 + κHM (CIx1/pI )κH−1
]
z

= pIM CκH−1
I (x1/pI )κH−1 z ,

where we used (33). Note that the coefficient is non-zero. Define a map

(Tz)(x) := z(x) − (∂yH)(πpI
(x), CIx1/pI + z(x))

pIM(CIx1/pI )κH−1
.

We wish to show that T : ZpI
(κg/pI , C) → ZpI

(κg/pI , C) if C is large enough.
Let C(κg) = fκg+1 if κg < κH and C(κg) = gκH+1 if κg = κH . The term in
Tz which vanish to lowest order is

(κg + 1)C(κg)πpI
(x) (CIx1/pI )κg−1

pIM(CIx1/pI )κH−1
= O

(

|x|
2

pI

)

,

Choosing C and rx as above finishes case I.
Case II: Consider the case κf = κg = κH + 1. Let θ̃�(x) = β�x, where β�

is as in (24). We define maps on Z1(2, C)

(T�z)(x) := z − (∂yH)(x, β�x+ z(x))
(κg − 1)A� xκg−2

,

which is well defined since

A� := (−1)κH+1 F (β� − 1)κH−1 + GβκH−1
�

= −G (β� − 1)κH β−1
� CκH−1

II

(
CII − (ακH

� )κH−1
)

�= 0 .

Here we used (24), the definition of CII , and that 0 < arg(CII) < 2π/κH .
The leading order contributions to T�z are

[(κg − 1)A�]−1
(
R
κf+1
f (1 − β�)κg + Rκg+1

g β
κg

�

)
x2 = O(|x|2) .

As above this estimate suffice.
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Next we turn to the case κf > κg. Let θ̃� be as in (25) and define maps
on ZκH/d(κf/κH , C) by

(T�z)(x) := z −
(∂yH)(πκH/d(x), θ̃�(x) + z(x))

(κg − 1)Gθ̃�(x)κg−2
.

Let ρII := min{2κf −κg−1, κf +κg−2}. The leading order terms in T�z are

−
(κf − 1)FπκH/d(x)κf−2θ̃�(x) −R

κf+1
f πκH/d(x)κf

(κg − 1)Gθ̃�(x)κg−2
= O

(
|x|ρII

)
.

Since 2κf−κg−1 ≥ κf and κf+κg−2 ≥ κf , we have ρII ≥ κf and conclude,
as above, case II.

Case III: Let θ̃� be as in (26) and write θ(x) = θ̃�(x) + z(x), where we
take z from ZκH/d(κg/κH , C). We define maps

(T�z)(x) := z −
(∂yH)(πκH/d(x), θ̃�(x) + z(x))

κHM [θ̃�(x) − πκH/d(x)]

Let ρIII := min{2κg − κH − 2, κH + κg − 1}. The leading order terms in T�z
are

(κg − 1)GπκH/d(x)κg−2θ̃�(x) +R
κg+1
g πκH/d(x)κg

κHM [θ̃�(x) − πκH/d(x)]
= O

(
|x|ρIII

)
.

Since 2κg − κH − 2 ≥ κg and κg + κH − 1 ≥ κg, we conclude, as above, case
III.

Finally we address analyticity of the a priori continuous solutions found
above. Maps from D′(rx) are analytic by the analytic implicit function theo-
rem [8, Theorem I.B.4], and maps from Riemanian covers are locally analytic
by the same argument, and hence analytic. That the maps above defined on
D′(rx) extend to analytic functions on the whole disc D(rx) follows from [3,
Theorem V.1.2]. �

3 The Essential Spectrum

In this section we use Proposition 1 to prove Theorem 1.
Let u ∈ R

ν be a unit vector. We introduce

σ(t) := Σ0(tu) and σ(1)(t; s) := σ(t − s) + ω(s) ,

where we abuse notation and identify ω(s) ≡ ω(su). We furthermore write

σ(1)(t) := inf
s∈R

σ(1)(t; s)

and I(1)
0 (t) := {s ∈ R|su ∈ I(1)

0 (tu)}.
We begin with three lemmata and a proposition. The first lemma is a

special case of [9, Sect. 3.2].
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Lemma 1. Assume v ∈ L2(Rν) and Conditions 1 (i), (ii) and 2 (i), (ii), (vi).
Let ξ ∈ R

ν and k ∈ R
ν . If Σ(1)

0 (ξ; k) < Σ
(2)
0 (ξ), then k ∈ I(1)

0 (ξ).

Using this lemma, cf. (6), we find that

Σess(ξ) = min{E | (ξ, E) ∈ T (1)
0 } , (27)

where T (1)
0 is the set of thresholds coming from one-photon excitations of the

ground state. It is defined by

T (1)
0 :=

{
(ξ, E) ∈ R

ν+1 | ∃k ∈ R
ν : E = Σ

(1)
0 (ξ; k) and (ξ; k) ∈ Crit(1)0

}
,

Crit(1)0 :=
{
(ξ, k) ∈ R

2ν | k ∈ I(1)
0 (ξ) and ∇kΣ(1)

0 (ξ; k) = 0
}
.

There are obvious extensions to higher photon number, which must be in-
cluded in (27), if ω is not subadditive.

The next lemma is the key to the applicability of Proposition 1.

Lemma 2. Let (ξ, k) ∈ Crit(1)0 , such that ξ �= 0 and ∇ω(k) �= 0. Then there
exists θ ∈ R such that k = θξ.

Proof. Let ξ �= 0 and k ∈ R
ν be a critical point ∇kΣ(1)

0 (ξ; k) = 0. Then

∇Σ0(ξ − k) = ∇ω(k) (28)

Write ∇ω(k) = c1k and ∇Σ0(ξ − k) = c2(ξ − k), using rotation invariance.
Here c1 �= 0. From (28) we find cξ = (1 + c)k, where c = c2/c1. Since ξ �= 0,
we conclude the result. �

We write in the following, for r ≥ 0, B(r) = {k ∈ R
ν ||k| = r}. For a unit

vector u and radii r1, r2 ≥ 0 we write for t ∈ R

Ct ≡ Ct(r1, r2;u) := {k ∈ B(r1) | tu − k ∈ B(r2)} .

We leave the proof of the following lemma to the reader. (Draw a picture.) It
deals with the stability of critical points which are not covered by Lemma 2.

Lemma 3. Let r1, r2 ≥ 0, u ∈ R
ν be a unit vector, and assume ν ≥ 2.

Suppose t0 ∈ R and Ct0 �= ∅. There exists a neighbourhood U of t0, such that:

i) If Ct0 �⊂ {−r1u,+r1u} and t ∈ U , then Ct �= ∅.
ii) If Ct0 ⊂ {−r1u,+r1u} , then Ct0 = {k0}. Let σ = u · k0(t0 − u · k0) ∈

{−r1r2, 0,+r1r2} (σ = 0 iff either r1 or r2 equals 0) and t ∈ U\{t0}. If
σ(t− t0) > 0 then Ct �= ∅, and if σ(t− t0) ≤ 0, then Ct = ∅.

Proposition 2. Let t0 ∈ R be such that σ(1)(t0) < Σ
(2)
0 (t0u). There exist

0 < δ ≤ 1 and an analytic function Uδ\{t0} � t → θ(t), where Uδ = (t0 −
δ, t0 + δ), such that σ(1)(t) = σ(1)(t; θ(t)), for t ∈ Uδ\{t0}. Furthermore,
there exist integers 1 ≤ p�, pr <∞, such that the functions (t0 − δ, t0) � t→
θ(t0 − (t0 − t)p�) and (t0, t0 + δ) � t → θ(t0 + (t− t0)pr ) extend analytically
through t0.
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Remark: The reason for only studying σ(1) where it is smaller than Σ(2)
0 , is

the need for having global minima of s → σ(1)(t; s) in I(1)
0 (t), cf. Lemma 1.

This may not be true in general. If ν = 1, 2 or ω is convex, this consideration
is unnecessary. See [9, Theorem 1.5 i)] and Lemma 2.

Proof. Pick δ̃ > 0 such that σ(1)(t) < Σ
(2)
0 (tu), for |t− t0| ≤ δ̃. For t ∈ Uδ̃, let

Gt = {s ∈ R|σ(1)(t; s) = σ(1)(t)} be the set of global minima for s→ σ(1)(t; s).
We recall from [9, Proof of Theorem 1.9] (an application of Lemma 1) that
the sets Gt are finite, and all s ∈ Gt are zeros of finite order for the analytic
function I(1)

0 (t) � s→ ∂sσ
(1)(t; s).

Secondly we remark that for any t̃ > 0 and σ̄ ∈ R, the set {(t, s) ∈ R
2||t| ≤

t̃ and σ(1)(t; s) ≤ σ̄} is compact. From this remark and the finiteness of the
Gt’s we conclude from Proposition 1 and a compactness argument that the
set

S̃ := {t ∈ Uδ̃|∃s ∈ Gt, n ∈ N s.t. ∂2
sσ

(1)(t; s) = 0 and ∂nσ(t− s) �= 0}

is locally finite. In particular, for t ∈ Uδ̃\S̃ the global minima s ∈ Gt are
all either simple zeroes of s → ∂sσ

(1)(t; s), or zeroes of infinite order for
s→ ∂σ(t− s).

Suppose first that t0 �∈ S̃. For s0 ∈ Gt0 which are simple zeroes of s →
∂sσ

(1)(t; s) we obtain from the analytic implicit function theorem analytic
solutions θ to ∂sσ(1)(t; θ(t)) = 0, defined in a neighbourhood of t0. For s0 ∈
Gt0 which are zeroes of infinite order of s → ∂σ(t0 − s) (and not already
included in the first case), we take θ(t) ≡ s0 which solves ∂sσ(1)(t; θ(t)) = 0
near t0. See Remark 1), with κf = ∞, after Proposition 1. We have thus
for some 0 < δ′ < δ̃ constructed |Gt0 | analytic functions θ� defined in Uδ′ ,
such that Gt0 = {θ�(t0)} and Gt ⊂ {θ�(t)} (by continuity) for t ∈ Uδ′ . Hence
σ(1)(t) = min1≤�≤|Gt0 | σ

(1)(t; θ�(t)), for t ∈ Uδ′ .
If |Gt0 | = 1 take δ = δ′ and θ = θ1. If |Gt0 | > 1 choose 0 < δ < δ′, �1, and

�2 such that the following choice works: θ(t) = θ�1(t), for t0 − δ < t < t0, and
θ(t) = θ�2(t), for t0 < t < t0 + δ. This proves the result if t0 �∈ S̃.

It remains to treat t0 ∈ S̃. Here we get from Proposition 1 a 0 < δ′ < δ̃ and

two families of analytic functions {θleft� } and {θright
� } defined in (t0 − δ′, t0)

and (t0, t0 + δ′) respectively, which parameterize the critical points for t near
t0, which comes from Gt0 . Furthermore Gt ⊂ {θleft� (t)}, t0 − δ′ < t < t0 and

Gt ⊂ {θright
� (t)}, t0 < t < t0 + δ′. Note that the number of branches to the

left and to the right need not be the same, but both are finite.
We are finished if we can prove that, for � �= �′, the function σ(1)

(t; θleft� (t)) − σ(1)(t; θleft�′ (t)) is either identically zero, or it does not van-
ish on a sequence of t’s converging to t0 from the left. Similarly for the right
of t0. (If there is only one branch, then it continues analytically through t0
and we are done).
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In the following we work to the left of t0 and drop the superscript “left”.
The region to the right of t0 can be treated similarly. There exists 1 ≤ p, p′ <
∞ and analytic functions θ : Rp → C and θ′ : Rp′ → C such that θ� and θ�′
are branches of θ and θ′ respectively. See Proposition 1. That is, there exist
0 ≤ q < p and 0 ≤ q′ < p′ such that

θ�(t) = θ(Rρp(t0 − t)) and θ�′(t) = θ′(Rρ
′

p′(t0 − t)) ,

where ρ = π + 2πq and ρ′ = π + 2πq′. Recall notation from (30) and (31).
Here we used the canonical embedding R\{0} � r → (t, 0) ∈ Rp, for any p.
Since z → θ(Rρp(Pp(z))) and z → θ′(Rρ

′

p′(Pp′(z))) are analytic and bounded
functions from D′(r) (for some r > 0), they extend to analytic functions on
D(r). We can hence define an analytic function

h(z) = σ(1)(z; θ(Rρp(Pp((t0 − z)p
′
)))) − σ(1)(z; θ′(Rρ

′

p′(Pp′((t0 − z)p))))

in D(r1/pp
′
). The function h is either identically zero or has only isolated

zeroes (one is at t0). This now implies that σ(1)(t; θ�(t)) − σ(1)(t; θ�′(t)) =
h(t0 − (t0 − t)1/pp

′
) is either identically zero or has finitely many zeroes near

t0. We can now choose 0 < δ < δ′ and θ as above. This concludes the proof. �

Proof of Theorem 1: Proposition 2 covers the case ν = 1. In the following we
assume ν ≥ 2. It suffices to prove the theorem locally near any t0 ∈ R. For
the global minima at t ∈ R we write

Mt :=
{
k ∈ R

ν | Σ(1)
0 (tu; k) = Σ

(1)
0 (tu)

}

and we introduce two subsets

M‖
t :=

{
k ∈ Mt | k ‖ u

}
and M0

t :=
{
k ∈ Mt | ∇ω(k) = 0

}
.

We begin with the following note. Let t0 ∈ R. If M‖
t0 = ∅ (M0

t0 = ∅) then
there exists a neighbourhood U � t0 such that for t ∈ U we have M‖

t = ∅
(M0

t = ∅).
Let t0 ∈ R. First consider the case M0

t0 = ∅. For t ∈ U , chosen as above,
we have Σess(tu) = σ(1)(t), which by Proposition 2 concludes the proof.

We can now assume that M0
t0 �= ∅. By analyticity and rotation invariance,

the set of k’s such that ∇ω(k) = 0 is a set of concentric balls, with a locally
finite set of radii. If k ∈ M0

t0 then Ok ∈ M0
t0 for any O ∈ O(ν;u), where

O(ν;u) := {O ∈ O(ν)|Ou = u}.
Let

M̃0
t =

{
k ∈ I(1)

0 (t) | (tu, k) ∈ Crit(1)0 and ∇ω(k) = 0
}
,

σ̃(1)(t) := min
k∈M̃0

t

Σ
(1)
0 (tu; k) ,
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with the convention that σ̃(1)(t) = +∞ if M̃0
t = ∅. Then by Lemma 2

Σ
(1)
0 (tu) = min{σ(1)(t), σ̃(1)(t)} .

We work only to the left of t0, i.e. we take t ≤ t0. The case t ≥ t0 can be
treated similarly.

We proceed to find a δ > 0 such that σ(1) is either constant equal to
Σ

(1)
0 (t0u), for t0 − δ < t ≤ t0 or it satisfies σ̃(1)(t) ≥ σ(1)(t) = Σ

(1)
0 (tu),

for t0 − δ < t ≤ t0. This concludes the result, since both σ(1) and a con-
stant function, suitably reparameterized, continues analytically though t0.
See Proposition 2.

First we consider the case where: (A) Σ0 is not constant on the connected
component of I0 containing t0u−k0, for any k0 ∈ M0

t0 . (B) For any k0 ∈ M0
t0

we have (with r1 = |k0| and r2 = |t0u − k0|): Ct0(r1, r2;u) ⊂ {−r1u, r1u}
and u · k0(t0 − u · k0) ≤ 0. Assuming (A) and (B) we have by Lemma 3 ii)
a δ > 0, such that

Ct(r1, r2;u) = ∅ , for t0 − δ < t < t0 . (29)

We proceed to argue that (A) and (B) implies Σ(1)
0 (tu) = σ(1)(t), for

t < t0. It suffices to find a δ > 0 such that M0
t = ∅, t0−δ < t < t0. Suppose to

the contrary that there exists a sequence tn → t0, with tn < t0 and M0
tn �= ∅.

Let kn ∈ M0
tn . We can assume, by possibly passing to a subsequence, that

kn → k∞. Here we used that ω(k) → ∞ as |k| → ∞. Clearly k∞ ∈ M0
t0 ,

and hence k∞ ∈ Ct0(r1, r2;u) for some r1, r2. Since the possible r1’s and r2’s
are isolated, we must have a n̄ such that ∀n > n̄: kn ∈ Ctn(r1, r2;u). This
contradicts (29).

For the remaining case we assume one of the following: (C) There exists
k0 ∈ M0

t0 such that Σ0 is constant on the connected component of I0 con-
taining t0u − k0. (The converse of ( A) above.) (D) There exists k0 ∈ M0

t0
such that either Ct0(r1, r2;u) �⊂ {−r1u, r1u} or Ct0(r1, r2;u) ⊂ {−r1u, r1u}
and u ·k0(t0 −u ·k0) > 0. Again r1 = |k0| and r2 = |t0u−k0|. (The converse
of B) above.)

There exists δ > 0 such that: In the case (C), for t0 − δ < t < t0,
there exists k ∈ M̃0

t with Σ
(1)
0 (tu; k) = Σ

(1)
0 (t0u). In case (D) we have

by Lemma 3 (i) and (ii), for t0 − δ < t < t0, likewise k ∈ M̃0
t with

Σ
(1)
0 (tu; k) = Σ

(1)
0 (t0u). Hence, if either (C) or (D) are satisfied we have

σ̃(1)(t) ≤ Σ
(1)
0 (t0u), for t0 − δ < t < t0.

In order to show the converse inequality σ̃(1)(t) ≥ Σ
(1)
0 (t0u), we assume

to the contrary that there exists a sequence tn → t0 and kn ∈ M̃0
tn such that

Σ
(1)
0 (tnu; kn) < Σ

(1)
0 (t0u). As above we can assume kn → k∞ ∈ M0

t0 . If Σ0

is constant on the connected component of t0u − k∞, then Σ
(1)
0 (tnu; kn) =

Σ
(1)
0 (t0u) is a constant sequence for n large enough, which is a contradic-

tion. If Σ0 is not constant on the connected component of t0u − k∞, then
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|kn| = |k∞| and |tnu − kn| = |t0u − k∞|, for n large enough, and again we
conclude Σ(1)

0 (tnu; kn) = Σ
(1)
0 (t0u) is a constant sequence, which is a contra-

diction. �

A Riemannian Covers

Let Rp = (0,∞) × R/2πpZ, equipped with the product topology. We write
z = (|z|, arg(z)) for elements of Rp and introduce the p-cover (Rp, πp) of
C\{0} by

πp : Rp → C\{0} where πp(z) := |z| ei arg(z) .

Note that πp is locally a homeomorphism and thus provides a chart which
turns Rp into an analytic surface. If U ⊂ Rp is such that πp is 1–1 on U ,
write π−1

U for the inverse homeomorphism from πp(U) to U .
We will use the concept of analytic functions to, from, and between cover

spaces. This is just special cases of what it means to be an analytic map
between two analytic surfaces, cf. [3, Sects. IX.6 and IX.7]

Let V ⊂ C, Vp ⊂ Rp, and Vq ⊂ Rq be open sets, and f1 : V → Rp,
f2 : Vp → Rq, and f3 : Vq → C continuous maps.

We say f1 is analytic if for any z0 ∈ V there exists an open set U ⊂ V
with z0 ∈ U , such that the map U � z → πp(f1(z)) is analytic in the usual
sense.

We say f2 is analytic if for any z0 ∈ Vp there exists an open set Up ⊂ Vp
with z0 ∈ Up and πp : Up → C 1–1, such that πp(Up) � z → πq(f2(π−1

Up
(z)))

is analytic in the usual sense.
We say f3 is analytic if for any z0 ∈ Vq there exists an open set Uq ⊂ Vq

with z0 ∈ Uq and πq : Uq → C 1-1, such that the map πq(Uq) � z →
f3(π−1

Uq
(z)) is analytic in the usual sense.

With this definition it is easy to check that f2 ◦ f1, f3 ◦ f2 and f3 ◦ f2 ◦ f1
are analytic maps. We give three examples which we use in Sect. 2. The first
example is Pp : C\{0} → Rp, defined by

Pp(z) := (|z|p, p arg(z)) . (30)

Second example: Let ρ ∈ R. We define a map Rρp : Rp → Rp by

Rρp(z) := (|z|, arg(z) + ρ mod 2πp) . (31)

The third example is the map Rp � z → z1/p ∈ C\{0} defined by

z1/p := |z|1/p ei arg(z)/p . (32)

The three examples above are all analytic and in addition bijections. We have

Pp(z1/p) = (Pp(z))1/p = z and (z1/p)p = πp(z) . (33)
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Abstract. One of the most remarkable recent developments in the study of ultra-
cold Bose gases is the observation of a reversible transition from a Bose Einstein
condensate to a state composed of localized atoms as the strength of a periodic,
optical trapping potential is varied. In [1] a model of this phenomenon has been
analyzed rigorously. The gas is a hard core lattice gas and the optical lattice is
modeled by a periodic potential of strength λ. For small λ and temperature Bose-
Einstein condensation (BEC) is proved to occur, while at large λ BEC disappears,
even in the ground state, which is a Mott-insulator state with a characteristic gap.
The inter-particle interaction is essential for this effect. This contribution gives a
pedagogical survey of these results.

1 Introduction

One of the most remarkable recent developments in the study of ultracold
Bose gases is the observation of a reversible transition from a Bose-Einstein
condensate to a state composed of localized atoms as the strength of a pe-
riodic, optical trapping potential is varied [2, 3]. This is an example of a
quantum phase transition [4] where quantum fluctuations and correlations
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rather than energy-entropy competition is the driving force and its theo-
retical understanding is quite challenging. The model usually considered for
describing this phenomenon is the Bose-Hubbard model and the transition
is interpreted as a transition between a superfluid and a Mott insulator that
was studied in [5] with an application to He4 in porous media in mind. The
possibility of applying this scheme to gases of alkali atoms in optical traps
was first realized in [6]. The article [7] reviews these developments and many
recent papers, e.g., [8–16] are devoted to this topic. These papers contain also
further references to earlier work along these lines.

The investigations of the phase transition in the Bose-Hubbard model are
mostly based on variational or numerical methods and the signal of the phase
transition is usually taken to be that an ansatz with a sharp particle number
at each lattice site leads to a lower energy than a delocalized Bogoliubov
state. On the other hand, there exists no rigorous proof, so far, that the true
ground state of the model has off-diagonal long range order at one end of
the parameter regime that disappears at the other end. In this contribution,
which is based on the paper [1], we study a slightly different model where
just this phenomenon can be rigorously proved and which, at the same time,
captures the salient features of the experimental situation.

Physically, we are dealing with a trapped Bose gas with short range inter-
action. The model we discuss, however, is not a continuum model but rather a
lattice gas, i.e., the particles are confined to move on a d-dimensional, hyper-
cubic lattice and the kinetic energy is given by the discrete Laplacian. More-
over, when discusssing BEC, it is convenient not to fix the particle number
but to work in a grand-canonical ensemble. The chemical potential is fixed in
such a way that the average particle number equals half the number of lattice
sites, i.e., we consider half filling. (This restriction is dictated by our method
of proof.) The optical lattice is modeled by a periodic, one-body potential.
In experiments the gas is enclosed in an additional trap potential that is
slowly varying on the scale of the optical lattice but we neglect here the in-
homogeneity due to such a potential and consider instead the thermodynamic
limit.

In terms of bosonic creation and annihilation operators, a†x and ax, our
Hamiltonian is expressed as

H = −1
2

∑

〈xy〉
(a†xay + axa

†
y) + λ

∑

x

(−1)xa†xax + U
∑

x

a†xax(a†xax − 1) . (1)

The sites x are in a cube Λ ⊂ Z
d with opposite sides identified (i.e., a d-

dimensional torus) and 〈xy〉 stands for pairs of nearest neighbors. Units are
chosen such that �

2/m = 1.
The first term in (1) is the discrete Laplacian

∑

〈xy〉(a
†
x − a†y)(ax − ay)

minus 2d
∑

x a
†
xax, i.e., we have subtracted a chemical potential that equals

d.
The optical lattice gives rise to a potential λ(−1)x which alternates in

sign between the A and B sublattices of even and odd sites. The inter-atomic
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on-site repulsion is U , but we consider here only the case of a hard-core
interaction, i.e., U = ∞. If λ = 0 but U < ∞ we have the Bose-Hubbard
model. Then all sites are equivalent and the lattice represents the attractive
sites of the optical lattice. In our case the adjustable parameter is λ instead
of U and for large λ the atoms will try to localize on the B sublattice.
The Hamiltonian (1) conserves the particle number N and it is shown in
[1], Appendix A, that, for U = ∞, the lowest energy is obtained uniquely
for N = 1

2 |Λ|, i.e., half the number of lattice sites. Because of the periodic
potential the unit cell in this model consists of two lattice sites, so that we
have on average one particle per unit cell. This corresponds, physically, to
filling factor 1 in the Bose-Hubbard model.

For given temperature T , we consider grand-canonical thermal equilib-
rium states, described by the Gibbs density matrices Z−1 exp(−βH) with
Z the normalization factor (partition function) and β = 1/T the inverse
temperature. Units are chosen so that Boltzmann’s constant equals 1. The
thermal expectation value of some observable O will be denoted by 〈O〉 =
Z−1TrO exp(−βH). In the proof of BEC we focus on dimensions d ≥ 3, but,
using the technique employed in [17], an extension to the ground state in two
dimensions is possible.

Our main results about this model can be summarized as follows:

1. If T and λ are both small, there is Bose-Einstein condensation. In this pa-
rameter regime the one-body density matrix γ(x,y) = 〈a†xay〉 has exactly
one large eigenvalue (in the thermodynamic limit), and the corresponding
condensate wave function is φ(x) = constant.

2. If either T or λ is big enough, then the one-body density matrix decays
exponentially with the distance |x − y|, and hence there is no BEC. In
particular, this applies to the ground state T = 0 for λ big enough, where
the system is in a Mott insulator phase.

3. The Mott insulator phase is characterized by a gap, i.e., a jump in the
chemical potential. We are able to prove this, at half-filling, in the region
described in item 2 above. More precisely, there is a cusp in the depen-
dence of the ground state energy on the number of particles; adding or
removing one particle costs a non-zero amount of energy. We also show
that there is no such gap whenever there is BEC.

4. The interparticle interaction is essential for items 2 and 3. Non-interacting
bosons always display BEC for low, but positive T (depending on λ, of
course).

5. For all T ≥ 0 and all λ > 0 the diagonal part of the one-body density
matrix 〈a†xax〉 (the one-particle density) is not constant. Its value on the
A sublattice is constant, but strictly less than its constant value on the
B sublattice and this discrepancy survives in the thermodynamic limit.
In contrast, in the regime mentioned in item 1, the off-diagonal long-
range order is constant, i.e., 〈a†xay〉 ≈ φ(x)φ(y)∗ for large |x − y| with
φ(x) =constant.
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T

λ

BEC

Mott insulator
(at low T)

exp. decay of correlations

no BEC

Fig. 1. Schematic phase diagram at half-filling

Because of the hard-core interaction between the particles, there is at
most one particle at each site and our Hamiltonian (with U = ∞) thus acts
on the Hilbert space H =

⊗

x∈ΛC
2. The creation and annihilation operators

can be represented as 2 × 2 matrices with

a†x ↔
(

0 1
0 0

)

, ax ↔
(

0 0
1 0

)

, a†xax ↔
(

1 0
0 0

)

,

for each x ∈ Λ. More precisely, these matrices act on the tensor factor as-
sociated with the site x while a†x and ax act as the identity on the other
factors in the Hilbert space H =

⊗

x∈ΛC
2. Thus the operators at differ-

ent sites commute as appropriate for Bosons, but on each site they satisfy
anticommutation relations, reflecting the hard core condition.

The Hamiltonian can alternatively be written in terms of the spin 1/2
operators

S1 =
1
2

(
0 1
1 0

)

, S2 =
1
2

(
0 −i
i 0

)

, S3 =
1
2

(
1 0
0 −1

)

.

The correspondence with the creation and annihilation operators is

a†x = S1
x + iS2

x ≡ S+
x , ax = S1

x − iS2
x ≡ S−

x ,

and hence a†xax = S3
x + 1

2 . (This is known as the Matsubara-Matsuda corre-
spondence [18].) Adding a convenient constant to make the periodic potential
positive, the Hamiltonian (1) for U = ∞ is thus equivalent to

H = −1
2

∑

〈xy〉
(S+

x S
−
y + S−

x S
+
y ) + λ

∑

x

[
1
2 + (−1)xS3

x

]

= −
∑

〈xy〉
(S1

xS
1
y + S2

xS
2
y) + λ

∑

x

[
1
2 + (−1)xS3

x

]
. (2)
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Without loss of generality we may assume λ ≥ 0. This Hamiltonian is well
known as a model for interacting spins, referred to as the XY model [19]. The
last term has the interpretation of a staggered magnetic field. We note that
BEC for the lattice gas is equivalent to off-diagonal long range order for the
1- and 2-components of the spins.

The Hamiltonian (2) is clearly invariant under simultaneous rotations of
all the spins around the 3-axis. In particle language this is the U(1) gauge
symmetry associated with particle number conservation of the Hamiltonian
(1). Off-diagonal long range order (or, equivalently, BEC) implies that this
symmetry is spontaneously broken in the state under consideration. It is no-
toriously difficult to prove such symmetry breaking for systems with a con-
tinuous symmetry. One of the few available techniques is that of reflection
positivity (and the closely related property of Gaussian domination) and for-
tunately it can be applied to our system. For this, however, the hard core and
half-filling conditions are essential because they imply a particle-hole sym-
metry that is crucial for the proofs to work. Naturally, BEC is expected to
occur at other fillings, but no one has so far found a way to prove condensa-
tion (or, equivalently, long-range order in an antiferromagnet with continuous
symmetry) without using reflection positivity and infrared bounds, and these
require the addtional symmetry.

Reflection positivity was first formulated by K. Osterwalder and R.
Schrader [20] in the context of relativistic quantum field theory. Later, J.
Fröhlich, B. Simon and T. Spencer used the concept to prove the existence
of a phase transition for a classical spin model with a continuous symme-
try [21], and E. Lieb and J. Fröhlich [22] as well as F. Dyson, E. Lieb and
B. Simon [19] applied it for the analysis of quantum spin systems. The proof
of off-diagonal long range order for the Hamiltonian (2) (for small λ) given
here is based on appropriate modifications of the arguments in [19].

2 Reflection Positivity

In the present context reflection positivity means the following. We divide the
torus Λ into two congruent parts, ΛL and ΛR, by cutting it with a hyperplane
orthogonal to one of the d directions. (For this we assume that the side length
of Λ is even.) This induces a factorization of the Hilbert space, H = HL⊗HR,
with

HL,R =
⊗

x∈ΛL,R

C
2 .

There is a natural identification between a site x ∈ ΛL and its mirror image
ϑx ∈ ΛR. If F is an operator on H = HL we define its reflection θF as an
operator on HR in the following way. If F = Fx operates non-trivially only
on one site, x ∈ ΛL, we define θF = V FϑxV

† where V denotes the unitary
particle-hole transformation or, in the spin language, rotation by π around
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the 1-axis. This definition extends in an obvious way to products of operators
on single sites and then, by linearity, to arbitrary operators on HL. Reflection
positivity of a state 〈 · 〉 means that

〈FθF 〉 ≥ 0 (3)

for any F operating on HL. Here F is the complex conjugate of the operator
F in the matrix representation defined above, i.e., defined by the basis where
the operators S3

x are diagonal.
We now show that reflection positivity holds for any thermal equilibrium

state of our Hamiltonian. We can write the Hamiltonian (2) as

H = HL +HR − 1
2

∑

〈xy〉∈M
(S+

x S
−
y + S−

x S
+
y ) , (4)

whereHL andHR act non-trivially only on HL and HR, respectively. Here,M
denotes the set of bonds going from the left sublattice to the right sublattice.
(Because of the periodic boundary condition these include the bonds that
connect the right boundary with the left boundary.) Note that HR = θHL,
and ∑

〈xy〉∈M
(S+

x S
−
y + S−

x S
+
y ) =

∑

〈xy〉∈M
(S+

x θS
+
x + S−

x θS
−
x ) .

For these properties it is essential that we included the unitary particle-hole
transformation V in the definition of the reflection θ. For reflection positivity
it is also important that all operators appearing in H (4) have a real matrix
representation. Moreover, the minus sign in (4) is essential.

Using the Trotter product formula, we have

TrFθFe−βH = lim
n→∞

TrFθF Zn

with

Zn =



e−
1
nβHLθe−

1
nβHL

∏

〈xy〉∈M

(

1 +
β

2n
[
S+

x θS
+
x + S−

x θS
−
x )
]
)




n

. (5)

Observe that Zn is a sum of terms of the form
∏

iAiθAi , (6)

with Ai given by either e−
1
nβHL or

√
β
2nS

+
x or

√
β
2nS

−
x . All the Ai are real

matrices, and therefore

TrH FθF
∏

iAiθAi = TrH F
∏

iAi θ
[

F
∏

jAj

]

=
∣
∣TrHL F

∏

iAi
∣
∣2 ≥ 0 . (7)

Hence TrFθF Zn is a sum of non-negative terms and therefore non-negative.
This proves our assertion.
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3 Proof of BEC for Small λ and T

The main tool in our proof of BEC are infrared bounds. More precisely, for
p ∈ Λ∗ (the dual lattice of Λ), let S̃#

p = |Λ|−1/2
∑

x S
#
x exp(ip ·x) denote the

Fourier transform of the spin operators. We claim that

(S̃1
p, S̃

1
−p) ≤ T

2Ep
, (8)

with Ep =
∑d
i=1(1− cos(pi)). Here, pi denotes the components of p, and ( , )

denotes the Duhamel two point function at temperature T , defined by

(A,B) =
∫ 1

0

Tr
(

Ae−sβHBe−(1−s)βH
)

ds/Tr e−βH (9)

for any pair of operators A and B. Because of invariance under rotations
around the S3 axis, (8) is equally true with S1 replaced by S2, of course.

The crucial lemma (Gaussian domination) is the following. Define, for a
complex valued function h on the bonds 〈xy〉 in Λ,

Z(h) = Tr exp [−βK(h)] , (10)

with K(h) the modified Hamiltonian

K(h)=
1
4

∑

〈xy〉

((
S+

x − S−
y − hxy

)2+
(
S−

x − S+
y − hxy

)2
)

+λ
∑

x

[
1
2+(−1)xS3

x

]
.

(11)
Note that for h ≡ 0,K(h) agrees with the HamiltonianH, because (S±)2 = 0.
We claim that, for any real valued h,

Z(h) ≤ Z(0) . (12)

The infrared bound then follows from d2Z(εh)/dε2|ε=0 ≤ 0, taking hxy =
exp(ip ·x)−exp(ip ·y). This is not a real function, though, but the negativity
of the (real!) quadratic form d2Z(εh)/dε2|ε=0 for real h implies negativity also
for complex-valued h.

The proof of (12) is very similar to the proof of the reflection positivity
property (3) given above. It follows along the same lines as in [19], but we
repeat it here for convenience of the reader.

The intuition behind (12) is the following. First, in maximizing Z(h) one
can restrict to gradients, i.e., hxy = ĥx− ĥy for some function ĥx on Λ. (This
follows from stationarity of Z(h) at a maximizer hmax.) Reflection positivity
implies that 〈AθB〉 defines a scalar product on operators on HL, and hence
there is a corresponding Schwarz inequality. Moreover, since reflection posi-
tivity holds for reflections across any hyperplane, one arrives at the so-called
chessboard inequality, which is simply a version of Schwarz’s inequality for
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multiple reflections across different hyperplanes. Such a chessboard estimate
implies that in order to maximize Z(h) it is best to choose the function ĥx

to be constant. In the case of classical spin systems [21], this intuition can be
turned into a complete proof of (12). Because of non-commutativity of K(h)
with K(0) = H, this is not possible in the quantum case. However, one can
proceed by using the Trotter formula as follows.

Let hmax be a function that maximizes Z(h) for real valued h. If there
is more than one maximizer, we choose hmax to be one that vanishes on the
largest number of bonds. We then have to show that actually hmax ≡ 0. If
hmax �≡ 0, we draw a hyperplane such that hxy �= 0 for at least one pair 〈xy〉
crossing the plane. We can again write

K(h)=KL(h)+KR(h)+
1
4

∑

〈xy〉∈M

(
(S+

x − S−
y − hxy)2 + (S−

x − S+
y − hxy)2

)
.

(13)
Using the Trotter formula, we have Z(h) = limn→∞ αn, with

αn=Tr



e−βKL/ne−βKR/n
∏

〈xy〉∈M
e−β(S

+
x −S−

y −hxy)2/4ne−β(S
−
x −S+

y −hxy)2/4n





n

.

(14)
For any matrix, we can write

e−D
2

= (4π)−1/2

∫

R

dk eikDe−k
2/4 . (15)

If we apply this to the last two factors in (14), and note that S−
y = θS+

x if
〈xy〉 ∈M . Denoting by x1, . . . ,xl the points on the left side of the bonds in
M , we have that

αn = (4π)−nl
∫

R2nl

d2nlkTr
[

e−βKL/ne−βKR/neik1(S
+
x1

−θS+
x1

)β1/2/2n1/2
. . .
]

× e−k
2/4e−ik1hx1ϑx1β

1/2/2n1/2··· . (16)

Here we denote k2 =
∑
k2
i for short. Since matrices on the right of M com-

mute with matrices on the left, and since all matrices in question are real, we
see that the trace in the integrand above can be written as

Tr
[

e−βKL/neik1S
+
x1
β1/2/2n1/2

. . .
]

Tr
[

e−βKR/neik1θS
+
x1β

1/2/2n1/2
. . .
]

. (17)

Using the Schwarz inequality for the k integration, and “undoing” the above
step, we see that
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|αn|2 ≤
(

(4π)−nl
∫

R2nl d
2nlk e−k

2/4

× Tr
[

e−βKL/ne−βθKL/neik1(S
+
x1

−θS+
x1

)β1/2/2n1/2

. . .
])

×
(

(4π)−nl
∫

R2nl d
2nlk e−k

2/4

× Tr
[

e−βθKR/ne−βKR/neik1(S
+
x1

−θS+
x1

)β1/2/2n1/2

. . .
])

.

(18)

In terms of the partition function Z(h), this means that

|Z(hmax)|2 ≤ Z(h(1))Z(h(2)) , (19)

where h(1) and h(2) are obtained from hmax by reflection across M in the
following way:

h(1)
xy =






hxy if x,y ∈ ΛL
hϑxϑy if x,y ∈ ΛR
0 if 〈xy〉 ∈M

(20)

and h(2) is given by the same expression, interchanging L and R. Therefore
also h(1) and h(2) must be maximizers of Z(h). However, one of them will
contain strictly more zeros than hmax, since hmax does not vanish identically
for bonds crossing M . This contradicts our assumption that hmax contains
the maximal number of zeros among all maximizers of Z(h). Hence hmax ≡ 0
identically. This completes the proof of (12).

The next step is to transfer the upper bound on the Duhamel two point
function (8) into an upper bound on the thermal expectation value. This
involves convexity arguments and estimations of double commutators like in
Sect. 3 in [19]. For this purpose, we have to evaluate the double commutators

[S̃1
p, [H, S̃

1
−p]]+[S̃2

p, [H, S̃
2
−p]] = − 2

|Λ|

(

H− 1
2λ|Λ|+2

∑

〈xy〉
S3

xS
3
y cosp·(x−y)

)

.

(21)
Let Cp denote the expectation value of this last expression,

Cp = 〈[S̃1
p, [H, S̃

1
−p]] + [S̃2

p, [H, S̃
2
−p]]〉 ≥ 0 .

The positivity of Cp can be seen from an eigenfunction-expansion of the trace.
From [19, Corollary 3.2 and Theorem 3.2] and (8) we infer that

〈S̃1
pS̃

1
−p + S̃2

pS̃
2
−p〉 ≤

1
2

√

Cp

Ep
coth

√

β2CpEp/4 . (22)

Using cothx ≤ 1 + 1/x and Schwarz’s inequality, we obtain for the sum over
all p �= 0,
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∑

p �=0

〈S̃1
pS̃

1
−p + S̃2

pS̃
2
−p〉 ≤

1
β

∑

p �=0

1
Ep

+
1
2

(
∑

p �=0

1
Ep

)1/2(∑

p �=0

Cp

)1/2

. (23)

We have
∑

p∈Λ∗ Cp = −2〈H〉+λ|Λ|, which can be bounded from above using
the following lower bound on the Hamiltonian:

H ≥ −|Λ|
4
[
d(d+ 1) + 4λ2

]1/2
+

1
2
λ|Λ| . (24)

This inequality follows from the fact that the lowest eigenvalue of

− 1
2
S1

x

2d∑

i=1

S1
yi

− 1
2
S2

x

2d∑

i=1

S2
yi

+ λS3
x (25)

is given by − 1
4 [d(d+1)+4λ2]1/2. This can be shown exactly in the same way

as [19, Theorem C.1]. Since the Hamiltonian H can be written as a sum of
terms like (25), with yi the nearest neighbors of x, we get from this fact the
lower bound (24).

With the aid of the sum rule

∑

p∈Λ∗

〈S̃1
pS̃

1
−p + S̃2

pS̃
2
−p〉 =

|Λ|
2

(which follows from (S1)2 = (S2)2 = 1/4), we obtain from (23) and (24) the
following lower bound in the thermodynamic limit:

lim
Λ→∞

1
|Λ| 〈S̃

1
0S̃

1
0 + S̃2

0S̃
2
0〉

≥ 1
2
− 1

2

(
1
2

[
d(d+ 1) + 4λ2

]1/2
cd

)1/2

− 1
β
cd, (26)

with cd given by

cd =
1

(2π)d

∫

[−π,π]d
dp

1
Ep

. (27)

This is our final result. Note that cd is finite for d ≥ 3. Hence the right side
of (26) is positive, for large enough β, as long as

λ2 <
1
c2d

− d(d+ 1)
4

.

In d = 3, c3 ≈ 0.505 [19], and hence this condition is fulfilled for λ � 0.960.
In [19] it was also shown that dcd is monotone decreasing in d, which implies
a similar result for all d > 3.

The connection with BEC is as follows. Since H is real, also γ(x,y) is
real and we have
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γ(x,y) = 〈S+
x S

−
y 〉 = 〈S1

xS
1
y + S2

xS
2
y〉 .

Hence, if ϕ0 = |Λ|−1/2 denotes the constant function,

〈ϕ0|γ|ϕ0〉 = 〈S̃1
0S̃

1
0 + S̃2

0S̃
2
0〉 ,

and thus the bound (26) implies that the largest eigenvalue of γ(x,y) is
bounded from below by the right side of (26) times |Λ|. In addition one
can show that the infrared bounds imply that there is at most one large
eigenvalue (of the order |Λ|), and that the corresponding eigenvector (the
“condensate wave function”) is strictly constant in the thermodynamic limit
[1]. The constancy of the condensate wave function is surprising and is not
expected to hold for densities different from 1

2 , where particle-hole symmetry
is absent. In contrast to the condensate wave function the particle density
shows the staggering of the periodic potential [1, Theorem 3]. It also contrasts
with the situation for zero interparticle interaction, as discussed at the end
of this paper.

In the BEC phase there is no gap for adding particles beyond half filling
(in the thermodynamic limit): The ground state energy, Ek, for 1

2 |Λ| + k
particles satisfies

0 ≤ Ek − E0 ≤ (const.)
|Λ| (28)

(with a constant that depends on k but not on |Λ|.) The proof of (28) is
by a variational calculation, with a trial state of the form (S̃+

0 )k|0〉, where
|0〉 denotes the absolute ground state, i.e., the ground state for half filling.
(This is the unique ground state of the Hamiltonian, as can be shown using
reflection positivity. See Appendix A in [1].) Also, in the thermodynamic
limit, the energy per site for a given density, e(#), satisfies

e(#) − e( 1
2 ) ≤ const.

(
#− 1

2

)2
. (29)

Thus there is no cusp at # = 1/2. To show this, one takes a trial state of the
form

|ψy〉 = eiε
∑

x S
2
x(S1

y + 1
2 )|0〉 . (30)

The motivation is the following: we take the ground state and first project
onto a given direction of S1 on some site y. If there is long-range order, this
should imply that essentially all the spins point in this direction now. Then
we rotate slightly around the S2-axis. The particle number should then go
up by ε|Λ|, but the energy only by ε2|Λ|. We refer to [1, Sect. IV] for the
details.

The absence of a gap in the case of BEC is not surprising, since a gap is
characteristic for a Mott insulator state. We show the occurrence of a gap,
for large enough λ, in the next section.
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4 Absence of BEC and Mott Insulator Phase

The main results of this section are the following: If either

– λ ≥ 0 and T > d/(2ln2), or
– T ≥ 0 and λ ≥ 0 such that λ + |e(λ)| > d, with e(λ) = ground state

energy per site,

then there is exponential decay of correlations:

γ(x,y) ≤ (const.) exp(−κ|x − y|) (31)

with κ > 0. Moreover, for T = 0, the ground state energy in a sector of fixed
particle number N = 1

2 |Λ| + k, denoted by Ek, satisfies

Ek + E−k − 2E0 ≥ (λ+ |e(λ)| − d)|k| . (32)

I.e, for large enough λ the chemical potential has a jump at half filling.
The derivation of these two properties is based on a path integral repre-

sentation of the equilibrium state at temperature T , and of the ground state
which is obtained in the limit T → ∞. The analysis starts from the observa-
tion that the density operator e−βH has non-negative matrix elements in the
basis in which {S3

x} are diagonal, i.e. of states with specified particle occupa-
tion numbers. It is convenient to focus on the dynamics of the ‘quasi-particles’
which are defined so that the presence of one at a site x signifies a deviation
there from the occupation state which minimizes the potential-energy. Since
the Hamiltonian is H = H0 + λW , with H0 the hopping term in (2) and W
the staggered field, we define the quasi-particle number operators nx as:

nx =
1
2

+ (−1)xS3
x =






a†xax, for x even

1 − a†xax, for x odd
. (33)

Thus nx = 1 means presence of a particle if x is on the A sublattice (potential
maximum) and absence if x is on the B sublattice (potential minimum).

The collection of the joint eigenstates of the occupation numbers, {|{nx}〉},
provides a convenient basis for the Hilbert space. The functional integral
representation of 〈{nx}| e−β(H0+λW ) |{nx}〉 involves an integral over config-
urations of quasi-particle loops in a space × time for which the (imaginary)
“time” corresponds to a variable with period β. The fact that the integral is
over a positive measure facilitates the applicability of statistical-mechanics
intuition and tools. One finds that the quasi-particles are suppressed by the
potential energy, but favored by the entropy, which enters this picture due to
the presence of the hopping term in H. At large λ, the potential suppression
causes localization: long ‘quasi-particle’ loops are rare, and the amplitude for
long paths decays exponentially in the distance, both for paths which may
occur spontaneously and for paths whose presence is forced through the inser-
tion of sources, i.e., particle creation and annihilation operators. Localization
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is also caused by high temperature, since the requirement of periodicity im-
plies that at any site which participates in a loop there should be be at least
two jumps during the short ‘time’ interval [0, β) and the amplitude for even
a single jump is small, of order β.

The path integral described above is obtained through the Dyson expan-
sion

et(A+B) = etA
∑

m≥0

∫

0≤t1≤t2≤···≤tm≤t
B(tm) · · ·B(t1)dt1 · · · dtm (34)

for any matrices A and B and t > 0, with B(t) = e−tABetA. (The m = 0
term in the sum is interpreted here as 1.)

In evaluating the matrix elements of e−βH = e−β(H0+λW ), in the basis
{|{nx}〉}, we note that W is diagonal and 〈{nx}|H0|{n′x}〉 is non-zero only
if the configurations {nx} and {n′x} differ at exactly one nearest neighbor
pair of sites where the change corresponds to either a creation of a pair of
quasi-particles or the annihilation of such a pair. I.e., the matrix elements are
zero unless nx = n′x for all x except for a nearest neighbor pair 〈xy〉, where
nx = ny, n′x = n′y, and nx + n′x = 1. In this case, the matrix element equals
−1/2.

Introducing intermediate states, the partition function can thus be written
as follows:

Tr e−βH=
∞∑

m=0

∫

0≤t1≤t2≤···≤tm≤β

∑

|{n(i)
x }〉, 1≤i≤m

× exp

(

−λ
m∑

i=1

(ti − ti−1)
∑

x

n(i)
x

)

dt1 · · · dtm

×(−1)m〈{n(1)
x }|H0|{n(m)

x }〉〈{n(m)
x }|H0|{n(m−1)

x }〉
×〈{n(m−1)

x }|H0|{n(m−2)
x }〉 · · · 〈{n(2)

x }|H0||{n(1)
x }〉 (35)

with the interpretation t0 = tm−β. Note that the factor in the last two lines
of (35) equals (1/2)m if adjacent elements in the sequence of configurations
{n(i)

x } differ by exactly one quasi-particle pair, otherwise it is zero.
Expansions of this type are explained more fully in [23]. A compact way

of writing (35) is:

Tr e−βH =
∫

v(dω)e−λ|ω| . (36)

Here the “path” ω stands for a set of disjoint oriented loops in the “space-
time” Λ × [0, β], with periodic boundary conditions in “time””. Each ω is
parametrized by a number of jumps, m, jumping times 0 ≤ t1 ≤ t2 ≤ · · · ≤
tm ≤ β, and a sequence of configurations {n(i)

x }, which is determined by
the initial configuration {n(1)

x } plus a sequence of “rungs” connecting nearest
neighbor sites, depicting the creation or annihilation of a pair of neighboring
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β

0
A B A B A B A B A

Fig. 2. Loop gas describing paths of quasi-particles for particle number N = |Λ|/2−
1. A line on an A site means presence of a particle, while on a B site it means
absence. The horizontal rungs correspond to hopping of a particle

quasi-particles (see Fig. 2). As in Feynman’s picture of QED, it is conve-
nient to regard such an event as a jump of the quasi-particle, at which its
time-orientation is also reversed. The length of ω, denoted by |ω|, is the
sum of the vertical lengths of the loops. The measure v(dω) is determined
by (35); namely, for a given sequence of configurations {n(i)

x }, 1 ≤ i ≤ m,
the integration takes places over the times of the jumps, with a measure
(1/2)mdt1 · · · dtm.

One may note that the measure v(dω) corresponds to a Poisson process
of random configurations of oriented “rungs”, linking neighboring sites at
random times, and signifying either the creation or the annihilation of a pair
of quasiparticles. The matrix element 〈{nx}|e−βH |{n′x}〉 gets no contribution
from rung configurations that are inconsistent, either internally or with the
boundary conditions corresponding to the specified state vectors. A consistent
configuration yields a family of non-overlapping loops which describe the
motion of the quasi-particles in in the “space-time” Λ × [0, β). Each such
configuration contributes with weight e−λ|ω| to the above matrix element
(another positive factor was absorbed in the measure v(dω)). One may note
that long paths are suppressed in the integral (38) at a rate which increases
with λ.

Likewise, for x �= y, we can write

Tr a†xaye
−βH =

∫

A(x,y)
v(dω)e−λ|ω| , (37)

where A(x,y) denotes the set of all loops that, besides disjoint closed loops,
contain one curve which avoids all the loops and connects x and y at time
zero. The one-particle density matrix can thus be written

γ(x,y) =

∫

A(x,y) v(dω)e−λ|ω|
∫
v(dω)e−λ|ω|

. (38)
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For an upper bound, we can drop the condition in the numerator that
the loops and the curve from x to y do not intersect. The resulting measure
space is simply a Cartesian product of the measure space appearing in the
denominator and the space of all curves, ζ, connecting x and y, both at time
0. Denoting the latter by B(x,y), we thus get the upper bound

γ(x,y) ≤
∫

B(x,y)

v(dζ)e−λ|ζ| . (39)

The integral over paths is convergent if either λ or T is small enough,
and away from the convergence threshold the resulting amplitude decays
exponentially. A natural random walk estimate, see [1, Lemma 4], leads to
the claimed exponential bound provided

d
(
1 − e−βλ

)
< λ . (40)

This includes, in particular, the cases T > d for any λ, and λ > d for any T .
Exponential decay actually holds for the larger range of parameters where

d
(

1 − e−β(λ−f)
)

< λ− f , (41)

where f = f(β, λ) = −(β|Λ|)−1lnTr e−βH is the free energy per site. Note
that f < 0. This condition can be obtained by a more elaborate estimate
than the one used in obtaining (39) from (38), as shown in [1, Lemma 3].
The argument there uses reflection positivity of the measure v(dω). Using
simple bounds on f one can then obtain from (41) the conditions stated in
the beginning of this section.

The proof of the energy gap is based on an estimate for the ratio TrPke
−βH

TrP0e−βH

where Pk projects onto states in Fock space with particle number N = 1
2 |Λ|+

k, expressing numerator and denominator in terms of path integrals. The
integral for the numerator is over configurations ω with a non-trivial winding
number k. Each such configuration includes a collection of “non-contractible”
loops with total length at least β|k|. An estimate of the relative weight of
such loops yields the bound

TrPke−βH
TrP0e−βH

≤ (const. )(|Λ|/|k|)|k|
(

e1−(const.)β
)|k|

(42)

which gives for β → ∞

Ek − E0 ≥ (const. )|k| (43)

independently of |Λ|. We refer to [1] for details.

5 The Non-Interacting Gas

The interparticle interaction is essential for the existence of a Mott insulator
phase for large λ. In case of absence of the hard-core interaction, there is
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BEC for any density and any λ at low enough temperature (for d ≥ 3). To
see this, we have to calculate the spectrum of the one-particle Hamiltonian
− 1

2∆ + V (x), where ∆ denotes the discrete Laplacian and V (x) = λ(−1)x.
The spectrum can be easily obtained by noting that V anticommutes with
the off-diagonal part of the Laplacian, i.e., {V,∆+ 2d} = 0. Hence

(

−1
2
∆− d+ V (x)

)2

=
(
− 1

2∆− d
)2 + λ2 , (44)

so the spectrum is given by

d±
√

(
∑

i cos pi)
2 + λ2 , (45)

where p ∈ Λ∗. In particular, E(p)−E(0) ∼ 1
2d(d

2 +λ2)−1/2|p|2 for small |p|,
and hence there is BEC for low enough temperature. Note that the condensate
wave function is of course not constant in this case, but rather given by the
eigenfunction corresponding to the lowest eigenvalue of − 1

2∆+ λ(−1)x.

6 Conclusion

In this paper a lattice model is studied, which is similar to the usual Bose-
Hubbard model and which describes the transition between Bose-Einstein
condensation and a Mott insulator state as the strength λ of an optical lat-
tice potential is increased. While the model is not soluble in the usual sense,
it is possible to prove rigorously all the essential features that are observed
experimentally. These include the existence of BEC for small λ and its sup-
pression for large λ, which is a localization phenomenon depending heavily on
the fact that the Bose particles interact with each other. The Mott insulator
regime is characterized by a gap in the chemical potential, which does not
exist in the BEC phase and for which the interaction is also essential. It is
possible to derive bounds on the critical λ as a function of temperature.
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& Université Paris VII
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1 Introduction

This paper1 is intended to constitute a review of some mathematical theories
incorporating quantum corrections to the Schrödinger-Poisson (SP) system.
More precisely we shall focus our attention in the electrostatic Poisson po-
tential with corrections of power type.

The SP system is a simple model used for the study of quantum transport
in semiconductor devices that can be written as a system of infinitely many
coupled equations (mixed-state) as

i�
∂ψj
∂t

= − �
2

2m
∆xψj +

(
γ

4π|x| ∗ nψ
)

ψj , j ∈ N , (1)

ψj = ψj(x, t) being the j-th component of the vector wave function and where
t > 0 is the time variable, x ∈ R

3 is the position variable, ψj(x, 0) = φj(x)
is the j-th component of the initial condition and nψ :=

∑

j∈N
λj |ψj |2 holds

for the charge density. Here, {λj} is a nonnegative sequence denoting the
occupation probabilities such that the normalization property

∑

j∈N
λj = 1

is fulfilled. In (1), � and m stand for the Planck constant and the particle
mass respectively. The Poisson potential is Vψ := γ

4π|x| ∗ nψ , where ∗ stands
for the x-convolution, γ = 1 for repulsive interactions and γ = −1 for at-
tractive interactions. In the sequel we are only concerned with the repulsive
system modeling electrostatic forces. The solutions to the SP system have
been proved to be strongly dispersive in the sense

1This work was partially supported by the European Union, TMR–contract
IHP HPRN–CT–2002–00282. J.L.L., O.S. and J.S. were also partially sponsored by
DGES (Spain), Project MCYT BFM2002–00831.
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Notes Phys. 690, 217–232 (2006)
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‖ψ(·, t)‖Lp(R3) ≤
C(φ)
tβ(p)

, p > 2 , β(p) > 0 , (2)

first in the single-state case λ = (1, 0, 0, . . . ) in [16] and later in the mixed-
state case in [7]. These bounds were recently improved in [33]. Here, the key
point is the positive character of the total energy

1
2

∑

j∈N

λj

∫

R3
|∇xψj |2 dx+

1
2

∫

R3
|∇xVψ|2 dx .

As consequence, other behaviours like steady-states, breathers, . . . are not
allowed by the SP system in contrast to experimental evidence (see [29]).

The motivation for the Xα approach

i�
∂ψj
∂t

= − �
2

2m
∆xψj +

(
1

4π|x| ∗ nψ
)

ψj − CS n
α
ψψj , j ∈ N , (3)

as a correction to the Hartree–Fock system stems from experimentation,
which evidences that effects due to the Coulomb charging energy could
strongly modify the electron tunneling. In this direction, the Schrödinger–
Poisson–Slater (SPS) system incorporates quantum corrections of power type

to the SP system with α = 1
3 . The nonlinear Slater term −CS n

1
3
ψ comes out as

a local correction to the Fock term Vex (see Sect. 2) and should be understood
as a quantum effect, following [10, 34] (see also [1, 4, 13] for a mathematical
approach), contrary to the Poisson term which has a classical counterpart.
Physically, the Slater constant CS is positive for the case of electrons. Notice
that if a different normalization

∑

j∈N
λj = a > 0 is assumed, then we are led

to an analogous problem with modified constants. In particular, the value of
CS is genuinely relevant for the subsequent dynamical stability analysis.

One important feature of the SPS system is that the total energy operator

E[ψ] = EK [ψ] + EP [ψ] , (4)

with

EK [ψ] =
1
2

∑

j∈N

λj

∫

R3
|∇xψj |2 dx kinetic energy ,

EP [ψ] =
1
2

∫

R3
|∇xVψ|2 dx− 3

4
CS

∫

R3
n

4
3
ψ dx potential energy ,

can reach negative values. This implies some relevant consequences:

(a) The minimum of the total energy operator is negative.
(b) There are steady-state (standing wave) solutions, i.e. solutions with con-

stant density.
(c) There are solutions (even with positive energy) which preserve the Lp

norm and do not decay with time. Thus, there are solutions that do not
exhibit strong dispersive character in the sense of (2).
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(d) Otherwise, in certain regime it can be proved that the solutions are dis-
persive in a statistical sense (∆x)2 = O(t2) i. e., the variance associated
with the solution grows with time. This may aim to the study of other
type of weaker dispersion properties implying loss of charge at t→ ∞.

To carry on this analysis the preserved quantities and the Galilean invariance
of the system are exploited.

These features show important qualitative differences concerning the dy-
namics of solutions to the SPS system when compared to the behaviour of
solutions to Schrödinger–Poisson or Hartree–Fock systems (see [7,15,16,18]).
Accordingly, the SPS system seems to be best realistic and fit properly to
semiconductor and heterostructure modeling.

Another justification for this approach stems from the ambit of quan-
tum chemistry, especially due to the high number of calculations necessary
to evaluate the Fock term (usually of order N4, N being the number of par-
ticles). Several Xα approaches to Fock’s correction (for example the Slater
approach) have been proved relevant in different contexts. The quantum cor-

rection n
1
3
ψψ is also known as the Dirac exchange term. Another interesting

approach comes up from the limit of heavy atoms, i.e. the high–charge–of–
nuclei limit. This leads to so–called Thomas–Fermi correction (α = 2

3 ) of the
kinetic energy (see [19, 20]), which can be alternatively seen as a correction
to Fock’s interaction showing up as a repulsive potential (see [20]).These lo-
cal approximations to nonlocal interaction terms yield excellent results when
studying stationary states, for example in the frame of quantum chemistry
(see [11] and [8,19,23] for details on derivations and analysis of these systems).
Then, the number of calculations is reduced from N4 to N3, even leaving a
margin to improvements. On the contrary, there is no rigorous foundation
of Xα models in the time-dependent case. Following the classical ideas of
thermodynamical limits in statistical mechanics (see [12]), some progress is
being currently done on this subject via continuum and mean–field limits of
the N -quantum–particle system (see for instance [2]).

In the single-state case λ = (1, 0, 0, . . . ) the system is reduced to only one
equation (for the wave function ψ(x, t) with normalized constants � = m =
1). In this case the model belongs to a wider class of nonlinear Schrödinger
equations with power nonlinearities, already analyzed in [9]. We also note
that the case of N coupled equations, with λj = 1

N if 1 ≤ j ≤ N and
λj = 0 otherwise, corresponds to the Xα correction in Kohn–Sham equa-
tions [17]. This model belongs to the density–functional theory approach in
Molecular Quantum Chemistry (see [26]) and constitutes a local approxima-
tion of the time-dependent Hartree–Fock system (see Sect. 2). Concerning
the mixed-state case, an existence and uniqueness theory in L2 and H1 has
been recently dealt with in [5] for the SPS system, being the basic ingredient
a generalization of Strichartz’ inequalities to mixed states (already exploited
in [7]) and Pazy’s fixed–point techniques [27].
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Our first aim in these notes is to set up the origins of the mixed SPS
system and of other related models, as well as to show that they are well–
posed in R

3. The analysis of some of the qualitative differences between Xα

models and the Schrödinger–Poisson and Hartree–Fock systems shall also
be dealt with. We are mainly interested in the exponent α = 1

3 studied in
semiconductor theory, which is derived from the Fock term by means of a
low density limit (see [5]).

Some of our results hold true under precise hypotheses relating the values
of the Slater constant, the mass and the energy of the system. It is known
that the Slater constant is a characteristic of the component metals in the
semiconductor device (see [14]) when interpreting the exchange–correlation
potential of Kohn–Sham type. Our analysis covers the whole range of vari-
ation for these constants and the relations among them appear in a natural
way, not being a restriction from a physical point of view. In this spirit, we
shall briefly report on the connections among the physical constants and the
minimum of energy in Sect. 5. Attractive interactions are also of interest in
applications, for instance to quantum gravity (see [28]). We finally remark
that most of our results are valid for other Xα-approaches else than Slater’s.

2 On the Derivation of the Slater Approach

We now describe how −CS n
1
3
ψ enters as a local approximation to the Hartree–

Fock exchange potential, which is itself an approximation of the N -electron
problem. In this case, the system evolution is represented by an N -electron
state wave function Ψ = Ψ(x1, . . . , xN , t) (xi ∈ Ω = R

3, 1 ≤ i ≤ N) that
belongs to L2

a(Ω
N ) =

∧N
i=1 L

2(Ω), that is the space of L2 functions which
are antisymmetric with respect to the exchange of any two variables xi and
xj . The antisymmetry assumption stems from the Pauli exclusion principle,
which establishes that two electrons cannot share the same position, so that
the probability density |Ψ |2 vanishes as xi = xj . However, for a rigorous
treatment the spin variables of the electrons must be considered. We can
then assume that the evolution of the system is described by the Schrödinger
equation

i�
∂Ψ

∂t
= HΨ =

(

− �
2

2m
∆x +

N∑

j=1

Vext(xj) + Vee

)

Ψ ,

where Vext is an external potential (such as interactions with nuclei) and

Vee :=
∑

1≤i<j≤N

1
|xi − xj |

is the electron–electron Coulomb potential, which mixes the variables xi.
Then, the total Coulomb energy is given by U(Ψ) := 〈Ψ, VeeΨ〉L2(ΩN ) .



Long Time Behaviour to the Schrödinger–Poisson–Xα Systems 221

In the Hartree–Fock system, determinantal wave functions

Ψ(x1, . . . , xN , t) =
1√
N !

det(ψi(xj , t))

are used to represent the electrons and guarantee that the system obeys the
Pauli principle. This expression contains the one–electron wave functions ψi.
Now, we assume 〈ψi, ψj〉 = δij , 1 ≤ i, j ≤ N , and skip t for simplicity. Then,
classical quantum calculations (see [26]) give U(Ψ) = Ecoul(nψ) + Eex(ψ) ,
where ψ = (ψ1, ψ2, . . . , ψN ) and nψ =

∑N
j=1 |ψj |2 is the density,

Ecoul(nψ) =
1
2

∫

Ω×Ω

nψ(x)nψ(y)
|x− y| dx dy

is the direct Coulomb energy and where the exchange energy is defined by

Eex(ψ) = −1
2

∫

Ω×Ω

|Dψ(x, y)|2
|x− y| dx dy , Dψ(x, y) :=

N∑

j=1

ψj(x)ψj(y) .

The Hartree–Fock equations can then be obtained as extrema points of the
energy functional

〈Ψ,HΨ〉 =
�

2

2m

N∑

j=1

∫

Ω

|∇xψj |2 dx+
∫

Ω

nψVext dx+ U(Ψ)

under the constraint 〈ψi, ψj〉L2(Ω) = δij , which leads to (see [23,25])

− �
2

2m
∆xψj + Vext ψj +

(

1
|x| ∗ nψ

)

ψj + Vex • ψj = εjψj , 1 ≤ j ≤ N ,

where the term Vex is a nonlocal operator defined by

(Vex • ψj)(x, t) := −
∫

Ω

1
|x− y|Dψ(x, y)ψj(y, t) dy (5)

and the εj are constants. The time-dependent Hartree–Fock equations are

i�
∂ψj
∂t

= − �
2

2m
∆xψj + Vextψj +

(

1
|x| ∗ nψ

)

ψj + (Vex • ψj) , 1 ≤ j ≤ N .

The Poisson (multiplicative) operator 1
|x| ∗nψ as well as the exchange operator

Vex can be obtained as functional derivatives of the Coulomb and exchange
energies Ecoul(nψ) and Eex(ψ), respectively. Existence and uniqueness of so-
lutions to this problem can be found in [25]. We also refer to [18] for a general
existence result for a system coupling the quantum Hartree–Fock equations
for electrons with a classical dynamics for the nuclei. For the semiclassical
and long-time asymptotics of the Hartree–Fock system, see [15].
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Remark 1. In a simpler model for which antisymmetry might not be assumed,
such as Ψ =

∏N
j=1 ψ(xj) (with

∫
|ψ|2 dx = 1), we would find

U(Ψ) =
N(N − 1)

2

∫

Ω×Ω

|ψ(x)|2|ψ(y)|2
|x− y| dx dy =

(N − 1
N

)

Ecoul(nψ)

with nψ = N |ψ|2, thus no exchange term is expected to appear.

There is no exact local expression for Vex. However, Vex can be well ap-
proximated by the multiplicative operator −CS n

1
3
ψ (for some constant CS ,

that can be adjusted to fit experimental evidence) as proposed by Slater [34].
This is also called the “Xα method”. We refer to [26] for a review of such sort
of approximations and numerical experiments. Justifications of the Slater ap-
proximation can be found in [1] (with Ω = R

3) and [3,4, 6, 13] for a periodic
model (when Ω is a box), in the limit N → ∞ of a large number of particles.

We give now an idea of Slater’s proof. Firstly we search for a local ap-
proximation (Vex • ψj)(x) ∼ Vav(x)ψj(x) . However, (Vex•ψj)(x)

ψj(x)
is not a local

operator. Following [34], we can approximate Vex by averaging the Hartree–
Fock exchange potential by the weighted densities |ψj |2, i.e.

Vav(x) =
N∑

j=1

(Vex • ψj)(x)
ψj(x)

|ψj(x)|2
nψ(x)

= −
∫

Ω

|Dψ(x, y)|2
|x− y|nψ(x)

dy . (6)

Note that the formal approximation Vex ∼ Vav is an exact integral identity,
since when the exchange energy is evaluated one finds

Eex =
1
2

∫

Ω

Vav(x)nψ(x) dx =
1
2

N∑

i=1

∫

Ω

(Vex • ψi)(x)ψi(x) dx .

The next step is to use a plane-wave approximation (see [13]). We assume
now that Ω = [−L2 ,

L
2 ]3 is a box with periodic boundary conditions. Denote

n0 := N
|Ω| the averaged electron density in the box of volume |Ω| = L3. Now

we take as first-order approximations to the single-particle wave functions
the plane-wave states

ψj(x) =
1

√
|Ω|

eikj ·x ,

with kj ∈ 2π
L Z

3 and kj ∈ BR, BR being the (euclidean) ball centered at 0
with smallest radius R in order to minimize the kinetic energy

Ekin =
N∑

j=1

∫

Ω

|∇xψj |2 dx =
N∑

j=1

|kj |2 .

In particular 4
3πR

3 ∼
(

2π
L

)3

N = (2π)3n0 , so that R ∼ Cn
1
3
0 with C > 0.

Also 〈ψi, ψj〉L2(Ω) = δij and nψ =
∑N
j=1 |ψj |2 = N

|Ω| = n0 . As consequence,



Long Time Behaviour to the Schrödinger–Poisson–Xα Systems 223

Dψ(x, y) =
1

√
|Ω|

N∑

j=1

eikj ·(x−y) ∼ 1
(2π)3

∫

BR

eih·(x−y) dh . (7)

This (nontrivial) continuous approximation is related to number-theory re-
sults (see [13]). Actually, the right-hand side of (7) is reduced to

Dψ(x, y) = CR3f(R(x− y)) where f(t) =
sin(|t|) − |t| cos(|t|)

|t|3 .

Finally, by using a change of variables in (6) and the periodic boundary
conditions, we get

Vav ∼ − 1
n0

∫

Ω

|Dψ(x, x+ h)|2
|h| dh ∼ −CR

∫

RΩ

|f(t)|2
|t| dt .

If we assume R → ∞, we find that Vav can be expressed as the product of
R = Cn

1
3
0 times a convergent integral: Vav ∼ −Cn

1
3
0 . This approach depends

on the dimension. In dimension d we would have Vav ∼ −Cd n
1
d
0 , although for

d �= 3 we should also possibly consider other interaction than 1
|x| .

To conclude, we note that it is also important to understand if the above
approximation still holds for varying densities nψ(x) �= n0. We refer to [4, 6]

for a proof of Vav ∼ −CS n
1
3
ψ in a first-order approximation, for densities

nψ(x) close to n0 and in the limit N → ∞.

Remark 2. The Slater and Dirac approximations of Eex are related through
EDiracex (ψ) = −CD

∫

Ω
n

4
3
ψ dx, for some CD > 0 (see [10]) and nψ =

∑N
j=1 |ψj |2.

Then, Dψi
EDiracex (ψ) = −

(
4
3CD n

1
3
ψ

)

ψi .

3 Some Results Concerning Well Posedness
and Asymptotic Behaviour

In the sequel we shall assume � = m = 1 and denote U(t) the propagator of
the free Schrödinger Hamiltonian.

3.1 Existence and Uniqueness of Physically Admissible Solutions

Definition 1. Let 1 ≤ p, q ≤ ∞ and T > 0.

(a) We define Lq,pT (λ) := Lq([0, T ];Lp(λ)) , Lq,ploc(λ) := Lqloc((0,∞);Lp(λ))
and Lq,p(λ) := Lq((0,∞);Lp(λ)), where

Lp(λ) :=






φ = {φj}j∈N, ‖φ‖Lp(λ) =




∑

j∈N

λj‖φj‖2
Lp(R3)





1
2

<∞






,
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(b) If 1
p + 1

p′ = 1
q + 1

q′ = 1, we define

Xq,pT := L∞,2
T (λ) ∩ Lq,pT (λ) , Y q,pT := L1,2

T (λ) + Lq
′,p′

T (λ) ,

equipped with the norms

‖ψ‖Xq,p
T

:= ‖ψ‖L∞,2
T (λ) + ‖ψ‖Lq,p

T (λ)

and
‖ψ‖Y q,p

T
:= inf

ψ1+ψ2=ψ

(

‖ψ1‖L1,2
T (λ) + ‖ψ2‖Lq′,p′

T (λ)

)

.

In the case T = ∞ we omit the index T and denote

Xq,p := L∞,2(λ) ∩ Lq,ploc(λ) , Y q,p := L1,2(λ) + Lq
′,p′

loc (λ) .

Also, in the single-state case we omit the index λ and denote Lq,pT , Lq,ploc and
Lq,p instead of Lq,pT (λ), Lq,ploc(λ) and Lq,p(λ).

We now introduce the concept of solutions we shall deal with.

Definition 2 (Mild solution). Given T > 0, we say that ψ ∈ Xq,pT is a
mild solution of the SPS system if it solves the integral equation

ψ(x, t) = U(t)φ(x) − i

∫ t

0

U(t− s)
(

Vψψ − CS n
1
3
ψψ
)

(x, s) ds , (8)

where V (ψ) = 1
4π|x| ∗ nψ and nψ =

∑

j∈N
λj |ψj |2.

It can be seen that (8) makes sense when ψ ∈ Xq,pT for some well chosen
(q, p) (see [5]). Given φ ∈ L2(λ), we first aim to search for a fixed point of

Γ [ψ](x, t) := U(t)φ(x) − i

∫ t

0

U(t− s)
(

Vψψ − CS n
1
3
ψψ
)

(x, s) ds .

For that, we use the definition of admissible pair given in [9].

Definition 3. For d = 3, we say that a pair (q, p) is admissible (and denote
it by (q, p) ∈ S) if 2 ≤ p < 6 and 2

q = 3( 1
2 − 1

p ) .

Existence and uniqueness of solutions to the initial value problem for the SPS
system (see [5]) is established in the following

Theorem 1. Let (q, p) ∈ S with p > 3 and φ ∈ L2(λ). We have

(a) There exists a unique global mild solution ψ ∈ Xq,p ∩ C0([0,∞);L2(λ))
of the SPS system. Furthermore,
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(i) ∀t > 0, ∀j, k ∈ N, 〈ψj(·, t), ψk(·, t)〉L2(R3) = 〈φj , φk〉L2(R3). In partic-
ular, ‖ψ(·, t)‖L2(λ) = ‖φ‖L2(λ) (charge preservation).

(ii) If ψ1, ψ2 solve the SPS system with initial data φ1, φ2 ∈ L2(λ), then

‖ψ2 − ψ1‖Xq,p
T

≤ CT ‖φ2 − φ1‖L2(λ) ∀T > 0 ,

where CT > 0 is a constant that only depends on T and (‖φj‖L2(λ))j=1,2.
(b) If φ ∈ H1(λ), then ∇xψ ∈ Xq,p and the total energy E[ψ](t) is time

preserved
(c) If CS = 0 the above results still hold true for p > 2 and (q, p) ∈ S.

Notice that under the assumption φ ∈ H1(λ) there are also other pre-
served quantities: the linear momentum 〈p〉(t) := 〈ψ,−i∇xψ〉L2(λ), the an-
gular momentum 〈j〉(t) := 〈ψ, −i(x ∧ ∇x)ψ〉L2(λ) and the boost operator
〈b〉(t) := 〈ψ, (x− it∇x)ψ〉L2(λ) (see [9] for the single-state case). These invari-
ances result via Noether’s theorem in conservation laws of the system and
play a relevant role in the analysis of the behaviour of solutions.

3.2 Minimum of Energy

For the sake of simplicity we shall deal with the single-state case from now
on. It is not surprising that the Slater term gives rise to some qualitative
differences in the behaviour of the solutions to the SPS system when com-
pared to solutions to the SP system. While the Schrödinger–Poisson energy
operator is positive in the repulsive case, it may become negative when the
Slater nonlinearity is also considered. Indeed, an application of the inequality

‖∇xVψ‖2
L2 ≤ C‖ψ‖

4
3
L2‖ψ‖

8
3

L
8
3

∀ψ ∈ L2(R3) ∩ L 8
3 (R3) , (9)

C being the best possible constant, yields negativeness for all times of the
potential energy associated with the solution ψ(x, t) under the following as-
sumption on the initial data φ of the SPS initial value problem:

2C
3

≤ CS

‖φ‖
4
3
L2(R3)

.

Remark 3. The inequality (9) as well as an upper bound for the sharp con-
stant C were found by Lieb and Oxford in [22]. In our context, this bound
takes the value C = 1.092

2π = 0.1737.

Furthermore, since the potential energy might be initially negative in the
repulsive case, we can find initial data for which the total energy is also
negative by scaling arguments (ψσ(x) = σ

3
2ψ(σx)).
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The fact that the total energy can reach negative values allows to estab-
lish significant differences in the asymptotic behaviour of solutions to the
SP and the SPS systems. For the repulsive SP system it is well known the
strong dispersion property (see [7, 16]): given φ ∈ L2, ‖ψ(·, t)‖Lp tends to
zero asymptotically in time for p ∈ (2, 6]. At variance, ‖ψ(·, t)‖

L
8
3

cannot go
to zero as t → ∞ if ψ is a solution to the repulsive SPS system such that
E[φ] < 0. This is because E[ψ] is time preserved and the Slater term is the
only nonpositive contribution to the total energy.

Motivated by these estimates, one can proceed to analyze the following
minimization problem associated with the total energy of the SPS system

IM = inf
{
E[ψ]; ψ ∈ H1(R3), ‖ψ‖L2 = M

}
. (10)

Existence of a minimizer for (10) implies two interesting consequences.

(a) The existence of stationary profiles, which are periodic-in-time solutions
to the SPS system preserving the density.

(b) The derivation of optimal bounds for the kinetic energy linked to solutions
ψ for which E[ψ] is well-defined.

Observe that things are sensibly different if we deal with the repulsive SP
system, since in this case the minimization problem has no solution because
the energy infimum is always set to 0, which is not a minimum except for the
case M = 0. In particular, stationary solutions do not exist.

The technical difficulties arising in the (nonconvex) minimization prob-
lem (10) stem from the invariance of E[ψ] by the noncompact group of trans-
lations as well as by the change of sign in the terms contributing to the
potential energy, which prevents rearrangement techniques to be used. The
possible loss of compactness due to that invariance has to be detected by the
techniques used in the proofs. In this way, two methods are commonly used in
the literature to solve this kind of problems: the concentration–compactness
method [24] and the method of nonzero weak convergence after transla-
tions [21]. In fact, it can be proved that every minimizing sequence is in
essence relatively compact provided that a certain subadditivity property
is strict. This condition implies that a minimizing sequence is concentrated
in a bounded domain. By considering this sort of arguments (under certain
technical assumptions) the results stated in the sequel were all proved in [32].

Theorem 2. Let CS ,M > 0 be such that

M <

(
7CS
10C

) 3
4

, (11)

where C is given by (9). Then there exists a minimizer ψM ∈ C∞(R3) of
(10) which satisfies the following Euler–Lagrange equation associated with
the total energy functional E[ψ]:
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− 1
2
∆ψM (x) +

1
4π

∫

R3

|ψM (x′)|2ψM (x)
|x− x′| dx′ − CS |ψM | 23ψM (x)

= βψM (x) (12)

in a distributional sense, for some β < 0.

From Theorem 2 it can be deduced the existence of standing waves
ψ(x, t) = e−iβtψ(x) as solutions of the SPS system in the repulsive case. Ac-
tually, these are time-periodic solutions which preserve the density. For this
kind of solutions, the repulsive SPS system is reduced to the time-independent
Schrödinger equation

βψ = −1
2
∆ψ + Vψψ − CS n

1
3
ψψ, lim

|x|→∞
ψ = 0 , (13)

coupled to the Poisson equation

∆Vψ = nψ , lim
|x|→∞

Vψ = 0 . (14)

Equations (13)–(14) can be rewritten as the Euler–Lagrange equation associ-
ated with (10) (cf. (12)). Then, Theorem 2 implies the existence of solutions
ψM . Let us also note that these solutions do not exist for the repulsive SP
system, for which all solutions are dispersive.

3.3 Optimal Kinetic Energy Bounds

Minimization of E[ψ] implies the minimization of

T (ψ) = − 1
4

(EP [ψ])2

EK [ψ]
.

This yields E[ψM ] = 1
2EP [ψM ] = −EK [ψM ] which is a virial theorem. In the

next result we use this fact to deduce optimal bounds for EK [ψ] depending
on E[φ] and on the minimum of E[ψ].

Proposition 1. We have E−
K [ψ] ≤ EK [ψ] ≤ E+

K [ψ] with

E±
K [ψ] = − 2 IM



1 − E[ψ]
2IM

±

√

1 − E[ψ]
IM



 (15)

for all ψ ∈ H1(R3) solution to the SPS system, where IM is given by (10).
Furthermore, if M satisfies (11) the energy bounds E±

K [ψ] are optimal.
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4 Long-Time Behaviour

We finally deal with the long-time evolution of solutions to the SPS system.
The standard arguments usually leading to the derivation of Lp bounds for
the solutions to nonlinear Schrödinger equations are fruitless in our case. This
is basically due to the fact that the sign of EP [ψ] depends on the balance
between the Coulombian potential and the Slater correction. We then have
to introduce new techniques. By arguing as in [30] we first write an equation
modeling the dispersion of solutions to the SPS system. Define

(∆x)2 := 〈x2〉(t) − 〈x〉2(t) , (∆p)2 := 〈p2〉(t) − 〈p〉2(t) ,

where x denotes the position operator, p = 1
i∇x is the momentum operator

and where the symbol 〈a〉 stands for the expected value of the function (or
functional) a(x, t): 〈a〉 =

∫

R3 ψ(x, t) a(x, t)ψ(x, t) dx . In terms of ∆x and ∆p
it can be proved (see [32]) that the dispersion equation for a SPS solution
ψ(x, t) with initial data in Σ = {u ∈ H2, xu ∈ L2} reads

d2

dt2
(∆x)2(t) = 2

(

E[ψ] − 1
2
〈p〉2(t)

)

+ (∆p)2(t) ,

or equivalently

d2

dt2
〈x2〉 = 2

(
1
2
〈p2〉 + E[ψ]

)

. (16)

Some simple computations starting from (16) lead us to an extended
pseudo-conformal law satisfied by the solutions ψ(x, t) to the SPS system:

d

dt

(

‖(x+ it∇x)ψ‖L2 + t2
∫

R3
Vψnψ dx− 3

2
CS t

2

∫

R3
|ψ| 83 dx

)

= t

∫

R3
Vψnψ dx− 3

2
CS t

∫

R3
|ψ| 83 dx . (17)

Equation (16) allows to deduce two important properties concerning the
long time behaviour of positive-energy solutions.

(a) Positive–energy solutions tend to expand unboundedly.
(b) A decay bound for the potential energy can be established.

Proposition 2. Let φ ∈ Σ be the initial data of the SPS system such that
E(φ) > 0. Then, the system expands unboundedly for large times and the
position dispersion 〈x2〉(t) grows like O(t2).

We can straightforwardly deduce lower bounds for the Lp norm of the
solutions, which are either positive constants or coincide with the usual decay
rates of the free Schrödinger equation, depending on a relation linking the
total energy, the mass and the linear momentum.
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Corollary 1. Let ψ(x, t) be a solution of the SPS system with initial data
φ ∈ Σ such that

E[φ] <
1
2
|〈p〉[φ]|2
‖φ‖L2

. (18)

Then, there exist positive constants C, C ′ and C ′′ depending on ‖φ‖L2 , E[φ],
|〈p〉(0)[φ]|2 and p such that

‖ψ(t)‖Lp(R3) ≥ C, EP [ψ] ≤ −C ′ , ∀ t ≥ 0 , ∀ p ∈
[8
3
, 6
]

. (19)

In the case that

E[φ] ≥ 1
2
|〈p〉[φ]|2
‖φ‖L2

, (20)

the following lower bound

‖ψ(·, t)‖Lp(R3) ≥
C ′′

t
3p−6
2p

, ∀ t > ξ > 0 , ∀ p ∈ [2, 6] , (21)

holds. Furthermore, if E[φ] < 0 and ‖φ‖L2 = 1 we have

(∆x)2 = O(t2) .

The proof combines the dispersion properties with the Galilean invari-
ance of the system (see [5]). In fact, this property guarantees that if ψ(x, t)
is a solution to the SPS system with initial data φ, then the solution
corresponding to the initial data ψN (x, 0) = eiNxφ(x), with N ∈ R

3, is
ψN (x, t) = eiNx−itN

2
ψ(x − 2tN, t). The inequalities (18) and (20) are moti-

vated by this property. We also remark that these solutions verify

‖ψN (·, t)‖Lp = ‖φ‖Lp , p ≥ 2

and EP (ψN ) = EP (φ).
The next result provides a positive rate-of-decay estimate for the potential

energy. Recall that the potential energy may be negative as shown before. In
the case that the initial condition satisfies (20) we find additional information
on the potential energy in the following

Proposition 3. Let ψ be the (unique) solution to the SPS system with initial
data φ ∈ Σ. Then

EP [ψ](t) ≤ Cξ
t

∀ t ≥ ξ > 0 , (22)

where Cξ is a positive constant depending on ξ.

Consider now the function

fψ(t) = ‖(x+ it∇)ψ(·, t)‖2
L2 + t2

∫

R3
|∇xV (x, t)|2 dx

− 3
2
CS t

2

∫

R3
|ψ(x, t)| 83 dx . (23)
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From (17) and (22) we get

fψ(t) ≤ C +
∫ t

ξ

Cξs

s
ds ≤ Cξt ∀ t ≥ ξ > 0 .

The evolution of fψ (more precisely, the evolution of its sign) implies qualita-
tive differences in the behaviour of ψ. The following result provides either a
decay estimate for EP [ψ] (in the attractive case) either a weak decay property
for some Lp,q norms of ψ.

Corollary 2. Let fψ be as in (23). If there exists t0 ∈ R
+ such that fψ(t0) <

0, then fψ(t) < 0 for all t ≥ t0 and

2EP [ψ] ≤
(
fψ(t0)
t0

)
1
t
< 0 ∀ t ≥ t0 .

Otherwise, we have
∫ ∞

ξ

‖ψ(s)‖
4p

3(p−2)

Lp(R3) ds ≤ C ∀ p ∈ (2, 6] ,

where C is a positive constant depending on p, ‖φ‖L2 , ‖xφ‖L2 and ξ > 0.

5 On the General Xα Case

As before, E[ψ] also reaches negative values when the Poisson potential is
coupled with power nonlinearities Cα |ψ|αψ with α ∈ (0, 4

3 ]. Even combina-
tions of some of these terms (with plus or minus sign) make this property
to hold (see [19]), leading eventually to a convex energy functional to be
minimized via standard techniques for convex operators.

Let us remark that in the interval
(

0, 4
3

]

there are two critical (with
respect to the minimization of the energy functional) exponents. The Slater
exponent α = 1

3 is critical because for all 0 < α < 1
3 it is easy to prove that

the energy may reach negative values. However, in
(

1
3 ,

2
3

)

it can be proved
that the energy also assumes negative values if a positive constant K(α)
depending upon α exists such that the interaction constant Cα and the total
charge ‖φ‖L2 fulfill the following relation

Cα

‖φ‖4(1−2α)
L2

> K(α) > 0 .

The other critical case for the energy minimization is α = 2
3 because the total

energy operator is not bounded from below when it reaches negative values.
This opens the problem of studying the balance of the kinetic energy against
the potential energy [31].
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Abstract. We consider random Schrödinger equations on Rd or Zd for d ≥ 3 with
uncorrelated, identically distributed random potential. Denote by λ the coupling
constant and ψt the solution with initial data ψ0. Suppose that the space and
time variables scale as x ∼ λ−2−κ/2, t ∼ λ−2−κ with 0 < κ ≤ κ0, where κ0 is a
sufficiently small universal constant. We prove that the expectation value of the
Wigner distribution of ψt, EWψt(x, v), converges weakly to a solution of a heat
equation in the space variable x for arbitrary L2 initial data in the weak coupling
limit λ → 0. The diffusion coefficient is uniquely determined by the kinetic energy
associated to the momentum v.

1 Introduction

Brown observed almost two centuries ago that the motion of a pollen sus-
pended in water was erratic. This led to the kinetic explanation by Einstein
in 1905 that Brownian motion was created by the constant “kicks” on the
relatively heavy pollen by the light water molecules. Einstein’s theory, based
upon Newtonian dynamics of the particles, in fact postulated the emergence
of the Brownian motion from a classical non-dissipative reversible dynamics.
Einstein’s theory became universally accepted after the experimental verifi-
cation by Perrin in 1908, but it was far from being mathematically rigorous.

The key difficulty is similar to the justification of Boltzmann’s molecu-
lar chaos assumption (Stoßzahlansatz) standing behind Boltzmann’s deriva-
tion of the Boltzmann equation. The point is that the dissipative character
emerges only in a scaling limit, as the number of degrees of freedom goes to
infinity.

The first mathematical definition of the Brownian motion was given in
1923 by Wiener, who constructed the Brownian motion as a scaling limit
of random walks. This construction was built upon a stochastic microscopic
dynamics which by itself are dissipative.

The derivation of the Brownian motion from a Hamiltonian dynamics
was not seriously investigated until the end of the seventies, when several

L. Erdős et al.: Towards the Quantum Brownian Motion, Lect. Notes Phys. 690, 233–257
(2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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results came out almost simultaneously. Kesten and Papanicolaou [16] proved
that the velocity distribution of a particle moving in a random scatterer
environment (so-called Lorenz gas with random scatterers) converges to the
Brownian motion in a weak coupling limit for d ≥ 3. The same result was
obtained in d = 2 dimensions by Dürr, Goldstein and Lebowitz [8]. In this
model the bath of light particles is replaced with random static impurities.
In a very recent work [18], Komorowski and Ryzhik have controlled the same
evolution on a longer time scale and proved the convergence to Brownian
motion of the position process as well.

Bunimovich-Sinai [5] proved the convergence of the periodic Lorenz gas
with a hard core interaction to a Brownian motion. In this model the only
source of randomness is the distribution of the initial condition. Finally, Dürr-
Goldstein-Lebowitz [7] proved that the velocity process of a heavy particle in
a light ideal gas converges to the Ornstein-Uhlenbeck process that is a version
of the Brownian motion. This model is the closest to the one in Einstein’s
kinetic argument.

An analogous development happened around the same time towards the
rigorous derivation of the Boltzmann equation. It was proved by Gallavotti
[14], Spohn [26] and Boldrighini, Bunimovich and Sinai [3] that the dynamics
of the Lorenz gas with random scatterers converges to the linear Boltzmann
equation at low density on the kinetic time scale. Lanford [19] has proved that
a truly many-body classical system, a low density gas with hard-core inter-
action, converges to the nonlinear Boltzmann equation for short macroscopic
times.

Brownian motion was discovered and theorized in the context of classi-
cal dynamics. Since it postulates a microscopic Newtonian model for atoms
and molecules, it is natural to replace the Newtonian dynamics with the
Schrödinger dynamics and investigate if Brownian motion correctly describes
the motion of a quantum particle in a random environment as well. One may
of course take first the semiclassical limit, reduce the problem to the classi-
cal dynamics and then consider the scaling limit. This argument, however,
does not apply to particles (or Lorenz scatterers) of size comparable with the
Planck scale. It is physically more realistic and technically considerably more
challenging to investigate the scaling limit of the quantum dynamics directly
without any semiclassical limit. We shall prove that Brownian motion also
describes the motion of a quantum particle in this situation. It is remarkable
that the Schrödinger evolution, which is time reversible and describes wave
phenomena, converges to a Brownian motion.

The random Schrödinger equation, or the quantum Lorentz model, is
given by the evolution equation:

i∂tψt(x) = Hψt(x), H = Hω = −1
2
∆x + λVω(x) (1)

where λ > 0 is the coupling constant and Vω is the random potential.
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The first time scale with a non-trivial limiting dynamics is the weak cou-
pling limit, λ → 0, where space and time are subject to kinetic scaling and
the coupling constant scales as

t→ tε−1, x→ xε−1, λ =
√
ε . (2)

Under this limit, the appropriately rescaled phase space density (Wigner
distribution, see (10) later) of the solution to the Schrödinger evolution (1)
converges weakly to a linear Boltzmann equation. This was first established
by Spohn (1977) [25] if the random potential is a Gaussian random field and
the macroscopic time is small. This method was extended to study higher
order correlations by Ho, Landau and Wilkins [13]. A different method was
developed in [10] where the short time restriction was removed. This method
was also extended to the phonon case in [9] and to the lattice case in [6].

For longer time scales, one expects a diffusive dynamics since the long
time limit of a Boltzmann equation is a heat equation. We shall therefore
take a time scale longer than in the weak coupling limit (2), i.e. we set
t ∼ λ−2−κ, κ > 0. Our aim is to prove that the limiting dynamics of the
Schrödinger evolution in a random potential under this scaling is governed by
a heat equation. This problem requires to control the Schrödinger dynamics
up to a time scale λ−2−κ. This is a much harder task than first deriving the
Boltzmann equation from Schrödinger dynamics on the kinetic scale and then
showing that Boltzmann equation converges to a diffusive equation under
a different limiting procedure. Quantum correlations that are small on the
kinetic scale and are neglected in the first limit, may contribute on the longer
time scale.

We consider two models in parallel. In the discrete setup we put the
Schrödinger equation (1) on Zd, i.e. we work with the Anderson model [2].
Thus the kinetic energy operator on �2(Zd) is given by

(∆f)(x) := 2d f(x) −
∑

|e|=1

f(x+ e) (3)

and the random potential is given by

Vω(x) =
∑

γ∈Zd

Vγ(x) , Vγ(x) := vγδ(x− γ) (4)

where vγ are real i.i.d. random variables and δ is the lattice delta function,
δ(0) = 1 and δ(y) = 0, y �= 0.

In the continuum model we consider the usual Laplacian, − 1
2∆x, as the

kinetic energy operator on L2(Rd). The random potential is given by

Vω(x) =
∫

Rd

B(x− y)dµω(y) , (5)

where µω is a Poisson process {yγ : γ = 1, 2, . . .} on Rd with unit density
and i.i.d. random masses, vγ , i.e. µω =

∑

γ vγδ(· − yγ), and B : Rd → R is a
smooth, radially symmetric function with rapid decay, with 0 in the support
of B̂.
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Since we investigate large distance phenomena, there should be no phys-
ical difference between the continuum and discrete models. On the technical
level, the discrete model is more complicated due to the non-convexity of
the energy surfaces of the discrete Laplacian in momentum space. However,
the continuum model also has an additional technical difficulty: the large
momentum regime needs a separate treatment.

Our proof builds upon the method initiated in [10]. In that paper the
continuum model with a Gaussian random field was considered. Here we
also consider the discrete model and non-Gaussian randomness, in order to
demonstrate that these restrictions are not essential. On the Boltzmann scale
this extension has also been achieved by Chen [6]. The other reason for work-
ing on the lattice as well is to make a connection with the extended state
conjecture in the Anderson model.

We recall that the Anderson model was invented to describe the electric
conduction properties of disordered metals. It was postulated by Anderson
that for localized initial data the wave functions for large time are localized for
large coupling constant λ and are extended for small coupling constant (away
from the band edges and in dimension d ≥ 3). The localization conjecture was
first established rigorously by Goldsheid, Molchanov and Pastur [15] in one
dimension, by Fröhlich-Spencer [12], and later by Aizenman-Molchanov [1]
in several dimensions, and many other works have since contributed to this
field. The extended state conjecture, however, has remained a difficult open
problem and only very limited progress has been made.

Most approaches on extended states focused on the spectral property of
the random Hamiltonian. It was proved by Klein [17] that all eigenfuctions
are extended on the Bethe lattice. In Euclidean space, Schlag, Shubin and
Wolff [24] proved that the eigenfunctions cannot be localized in a region
smaller than λ−2+δ for some δ > 0 in d = 2. Chen [6], extending the method
of [10] to the lattice case, proved that the eigenfunctions cannot be local-
ized in a region smaller than λ−2 in any dimension d ≥ 2 with logarithmic
corrections. Lukkarinen and Spohn [21] have employed a similar technique
for studying energy transport in a harmonic crystal with weakly perturbed
random masses.

A special class of random Schrödinger equation was proposed to under-
stand the dynamics in the extended region. Instead of random potential with
i.i.d. random variables, one considers a random potential Vω(x) with a power
law decay, i.e.,

Vω(x) = h(x)ωx , h(x) ∼ |x|−η

where ωx are mean zero i.i.d. random variables and η > 0 is a fixed parameter.
If η ≥ 1 a standard scattering argument yields that for λ small enough

Hω has absolutely continuous spectrum. Using cancellation properties of the
random potential, Rodnianski and Schlag [22] have improved the same result
to η > 3/4 in d ≥ 2 and recently, J. Bourgain [4] has extended it to η > 1/2.
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For η > 1/2 the particle becomes essentially ballistic at large distances and
there are only finitely many effective collisions.

In summary, in all known results [4,6,22,24] for the Anderson model (or its
modification) in Euclidean space the number of effective collisions are finite.
In the scaling of the current work (13), the number of effective scatterings
goes to infinity in the scaling limit, as it should be the case if we aim to
obtain a Brownian motion.

As in [6], our dynamical result also implies that the eigenfunctions cannot
be localized in a region smaller than λ−2−δ for some δ > 0 and dimension
d ≥ 3 (one can choose δ = κ/2 with κ from Theorem 1). Though this result is
the strongest in the direction of eigenfunction delocalization, we do not focus
on it here.

Our main result is that the time reversible Schrödinger evolution with
random impurities on a time scale λ−2−κ is described by a dissipative dy-
namics. In fact, this work is the first rigorous result where a heat equation is
established from a time dependent quantum dynamics without first passing
through a semiclassical limit.

In this contribution we explain the result and the key ideas in an informal
manner. The complete proof is given in [11].

2 Statement of Main Result

We consider the discrete and the continuum models in paralell, therefore we
work either on the d-dimensional lattice, Zd, or on the continuous space, Rd.
We always assume d ≥ 3. Let

Hω := −1
2
∆+ λVω (6)

denote a random Schrödinger operator acting on H = l2(Zd), or H = L2(Rd).
The kinetic energy operator and the random potential are defined in (3)–(5).
We assume that Evγ = Ev3

γ = 0, Ev2
γ = 1 and Ev2d

γ <∞.
In the discrete case, the Fourier transform is given by

f̂(p) ≡ (Ff)(p) :=
∑

x∈Zd

e−2πip·xf(x) ,

where p = (p(1), . . . , p(d)) ∈ Td := [− 1
2 ,

1
2 ]d. Sometimes an integral notation

will be used for the normalized summation over any lattice (δZ)d:
∫

(· · · )dx := δd
∑

x∈(δZ)d

(· · · ) .

The inverse Fourier transform is given by
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(F−1ĝ)(x) = . . .

∫

(T/δ)d

ĝ(p)e2πip·xdp .

In the continuous case the Fourier transform and its inverse are given by

(Ff)(p) :=
∫

Rd

e−2πip·xf(x)dx , (F−1ĝ)(x) =
∫

Rd

ĝ(p)e2πip·xdp .

We will discuss the two cases in parallel, in particular we will use the unified
integral notations

∫
(· · · )dx and

∫
(· · · )dp. The letters x, y, z will always be

used for position space coordinates (hence elements of (δZ)d or Rd). The
letters p, q, r, u, v, w denote for d-dimensional momentum variables (elements
of (T/δ)d or Rd).

The Fourier transform of the kinetic energy operator is given by
(

F
[

− 1
2
∆
]

f
)

(p) = e(p)f̂(p) .

The dispersion law, e(p), is given by

e(p) :=
d∑

i=1

(1 − cos(2πp(i))), and e(p) :=
1
2
p2

in the discrete and in the continuous case, respectively.
For h : Td → C and an energy value e ∈ [0, 2d] we introduce the notation

[h](e) :=
∫

h(v)δ(e− e(v))dv :=
∫

Σe

h(q)
dν(q)
|∇e(q)| (7)

where dν(q) = dνe(q) is the restriction of the d-dimensional Lebesgue mea-
sure to the level surface Σe := {q : e(q) = e} ⊂ Td. By the co-area formula
it holds that ∫ 2d

0

[h](e)de =
∫

h(v)dv . (8)

We define the projection onto the energy space of the free Laplacian by

〈h(v) 〉e :=
[h](e)
Φ(e)

, where Φ(e) := [1](e) =
∫

δ(e− e(u))du . (9)

In the continuous case we define analogous formulas for any function h :
Rd → C and energy value e ≥ 0.

Define the Wigner transform of a function ψ ∈ L2(Zd) or ψ ∈ L2(Rd) via
its Fourier transform by

Wψ(x, v) :=
∫

e2πiw·xψ̂
(

v − w

2

)

ψ̂
(

v +
w

2

)

dw .
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In the lattice case the integration domain is the double torus (2T)d and x
runs over the refined lattice, x ∈ (Z/2)d. For ε > 0 define the rescaled Wigner
distribution as

W ε
ψ(X,V ) := ε−dWψ

(X

ε
, V
)

. (10)

(with X ∈ (εZ/2)d in the lattice case).
The weak coupling limit is defined by the following scaling:

T := εt, X := εx, ε = λ2 . (11)

In the limit ε → 0 the Wigner distribution W ε
ψε−1T

(X ,V) converges weakly
to the Boltzmann equation ( [6, 10])

(

∂T +
1
2π

∇e(V ) · ∇X
)

FT (X , V ) =
∫

dUσ(U, V )
[

FT (X , U) − FT (X , V )
]

(12)
where 1

2π∇e(V ) is the velocity. The collision kernel is given by

σ(U, V ) := 2πδ(e(U) − e(V )) discrete case

σ(U, V ) := 2π|B̂(U − V )|2δ(e(U) − e(V )) continuous case .

Note that the Boltzmann equation can be viewed as the generator of a
Markovian semigroup on phase space. In particular, the validity of the
Boltzmann equation shows that all correlation effects become negligible in
this scaling limit.

Now we consider the long time scaling, i.e. with some κ > 0,

x = λ−κ/2−2X = ε−1X, t = λ−κ−2T = ε−1λ−κ/2T, ε = λκ/2+2 . (13)

Theorem 1. [Quantum Diffusion on Lattice] Let d = 3 and ψ0 ∈ �2(Zd)
be an initial wave function with ψ̂0 ∈ C1(Td). Let ψ(t) = ψλt,ω solve the
Schrödinger equation (1). Let Õ(x, v) be a function on Rd×Td whose Fourier
transform in the first variable, denoted by O(ξ, v), is a C1 function on Rd×Td

and ∫

Rd

dξ
∫

dv|O(ξ, v)||ξ| ≤ C . (14)

Fix e ∈ [0, 2d]. Let f be the solution to the heat equation

∂T f(T,X, e) = ∇X ·D(e)∇Xf(T,X, e) (15)

with the initial condition

f(0,X, e) := δ(X)
[

|ψ̂0(v)|2
]

(e)

and the diffusion matrix D
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Dij(e) :=

〈
sin(2πv(i)) · sin(2πv(j))

〉

e

2π Φ(e)
i, j = 1, 2, 3 . (16)

Then for κ < 1/2000 and ε and λ related by (13), the Wigner distribution
satisfies

lim
ε→0

∫

(εZ)d

dX
∫

Rd

dvÕ(X, v)EW ε
ψ(λ−κ−2T )(X, v) (17)

=
∫

Rd

dX
∫

Rd

dv Õ(X, v)f(T,X, e(v)) .

By the symmetry of the measure 〈·〉e under each sign flip vj → −vj we see
that D(e) is a constant times the identity matrix:

Dij(e) = De δij , De :=

〈
sin2(2πv(1))

〉

e

2π Φ(e)
,

in particular we see that the diffusion is nondegenerate.
The diffusion matrix can also be obtained from the long time limit of the

Boltzmann equation (12). For any fixed energy e, let

Lef(v) :=
∫

du σ(u, v)[f(u) − f(v)], e(v) = e , (18)

be the generator of the momentum jump process on Σe with the uniform sta-
tionary measure 〈·〉e. The diffusion matrix in general is given by the velocity
autocorrelation function

Dij(e) =
∫ ∞

0

dt
〈
sin(2πv(i)(t)) · sin(2πv(j)(0))

〉

e
, (19)

where v(t) is the process generated by Le. Since the collision kernel σ(U, V )
is uniform, the correlation between v(t) and v(0) vanishes after the first jump
and we obtain (16), using

∫

du σ(u, v) = 2πΦ(e) , e(v) = e .

The result in the continuum case is analogous. The diffusion matrix is
again a constant times the identity matrix, Dij(e) = Deδij , and De is again
given by the velocity autocorrelation function

De :=
1

3(2π)2

∫ ∞

0

dt 〈v(t) · v(0)〉e (20)

using the spatial isotropy. In this case De cannot be computed as a simple
integral since the outgoing velocity u in the transition kernel σ(u, v) of the
momentum process depends on the direction of v.
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Theorem 2. [Quantum Diffusion on Rd] Let d = 3 and ψ0 ∈ L2(Rd) be an
initial wave function with |ψ̂0(v)|2|v|N ∈ L2 for a sufficiently large N .

Let ψ(t) = ψλt,ω solve the Schrödinger equation (1). Let Õ(x, v) be a func-
tion whose Fourier transform in x, denoted by O(ξ, v), is a C1 function on
Rd × Rd and ∫ ∫

dξdv|O(ξ, v)||ξ| ≤ C . (21)

Let e > 0 and let f be the solution to the heat equation

∂T f(T,X, e) = De ∆Xf(T,X, e) (22)

with diffusion constant De given in (20) and with the initial condition

f(0,X, e) := δ(X)
[

|ψ̂0(v)|2
]

(e) .

Then for κ < 1/500 and ε and λ related by (13), the Wigner distribution
satisfies

lim
ε→0

∫ ∫

Rd×Rd

dXdvÕ(X, v)EW ε
ψ(λ−κ−2T )(X, v) (23)

=
∫ ∫

Rd×Rd

dXdv Õ(X, v)f(T,X, e(v)) .

The main tool of our proof is to use the Duhamel expansion to decom-
pose the wave function into elementary wavefuctions characterized by their
collision histories with the random obstacles. Assume for the moment that
the randomness is Gaussian and high order expectations can be computed by
Wick pairing. The higher order cumulants arising from a non-Gaussian ran-
domness turn out to be negligible by a separate argument. Therefore, when
computing the expectation of a product involving ψ and ψ̄ (e.g. E Wψ), we
pair the obstacles in the collision histories of ψ and ψ̄ and we thus generate
Feynman graphs.

If we take only the Laplacian as the free part in the expansion, even the
amplitudes of individual graphs diverge in the limit we consider. However, this
can be remedied by a simple resummation of all two-legged insertions caused
by the lowest order self-energy contribution. The resummation is performed
by choosing an appropriate reference HamiltonianH0 for the expansion. After
this rearrangement, all graphs have a finite amplitude in our scaling limit,
and the so-called ladder graphs give the leading contribution.

Each non-ladder graph has a vanishing amplitude as λ→ 0 due to oscilla-
tory integrals, in contrast to the ladder graphs where no oscillation is present.
However, the number of non-ladder graphs grows as k!, where k ∼ λ2t ∼ λ−κ

is the typical number of collisions. To beat this factorial growth, we need to
give a very sharp bound on the individual graphs.
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We give a classification of arbitrary large graphs, based on counting the
number of vertices carrying oscillatory effects. The number of these vertices is
called the degree of the graph. For the ladder graphs, the degree is zero. For
general graphs, the degree is roughly the number of vertices after removing all
ladder and anti-ladder subgraphs. We thus obtain an extra λc power (for some
c > 0) per non-(anti) ladder vertex. This strong improvement is sufficient to
beat the growth of the combinatorics in the time scale we consider. To our
knowledge, nothing like this has been done in a graphical expansion before.

For a comparison, the unperturbed Green functions in the perturbation
expansion for the many-fermion systems for small temperature and for the
random Schrödinger equation for large time are given by

1
ip0 + p2 − µ

,
1

p2 − α+ iη
.

In the many-fermion case, p0 ∈MF = {πβ (2n+ 1) : n ∈ Z} where β ∼ T−1 is
the inverse temperature. In the random Schrödinger case, η ∼ t−1. Their L2

properties are different:

1
β

∑

p0∈MF

∫

dp
∣
∣ip0 + p2 − µ

∣
∣−2 ∼ | log β|,

∫

dp
∣
∣p2 − α+ iη

∣
∣−2 ∼ η−1

Notice the divergence is more severe for the random Schrödinger equation
case.

Finally we note that the threshold κ < 1/2000 in our theorem can be sig-
nificantly improved with more detailed arguments. However, one cannot go
beyond κ = 2 with only improvements on estimates of the individual graphs.
The Duhamel formula must be expanded at least up to k = λ2t = λ−κ, which
is the typical number of collisions up to time t. Even if one proves for most
graphs the best possible estimate, λ2k, it cannot beat the k! combinatorics
when k � λ−2, i.e., λ2kk! � 1 for k � λ−2. A different resummation pro-
cedure is needed beyond this threshold to exploit cancellations among these
graphs.

3 Sketch of the Proof

We present the main ideas of the proof for the lattice case and comment on
the modifications for the continuous case.

3.1 Renormalization

Before expanding the solution of the Schrödinger equation (1) via the
Duhamel formula, we perform a renormalization of the “one-particle propaga-
tor” by splitting the Hamiltonian as H = H0+Ṽ , with H0 already containing
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the part of the self-energy produced by immediate recollisions with the same
obstacle. This effectively resums all such immediate recollisions.

Let θ(p) := Θ(e(p)), where Θ(α) := limε→0+Θε(α) and

Θε(α) :=
∫

1
α− e(q) + iε

dq . (24)

We have
Im Θ(α) = −πΦ(α) (25)

with Φ defined in (9).
We rewrite the Hamiltonian as H = H0 + Ṽ with

H0 := ω(p) := e(p) + λ2θ(p), Ṽ := λV − λ2θ(p) . (26)

Our renormalization includes only the lowest order self-energy. This suffices
on the time scales we consider.

3.2 The Expansion and the Stopping Rules

Iterating the Duhamel formula

e−itH = e−itH0 − i

∫ t

0

ds e−i(t−s)H Ṽ e−isH0 (27)

gives for any fixed integer N ≥ 1

ψt := e−itHψ0 =
N−1∑

n=0

ψn(t) + ΨN (t) , (28)

with

ψn(t) := (−i)n
∫ t

0

[dsj ]n+1
1 e−isn+1H0 Ṽ e−isnH0 Ṽ . . . Ṽ e−is1H0ψ0 (29)

being the fully expanded terms and

ΨN (t) := (−i)
∫ t

0

ds e−i(t−s)H Ṽ ψN−1(s) (30)

is the non-fully expanded or error term. We used the shorthand notation

∫ t

0

[dsj ]n1 :=
∫ t

0

. . .

∫ t

0

(
n∏

j=1

dsj

)

δ

(

t−
n∑

j=1

sj

)

.

Since each potential Ṽ in (29), (30) is a summation itself, Ṽ = −λ2θ(p) +
λ
∑

γ Vγ , both of these terms in (29) and (30) are actually big summations
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over so-called elementary wavefunctions, which are characterized by their
collision history, i.e. by a sequence of obstacles labelled by γ ∈ Zd and a label
ϑ corresponding to an insertion of −λ2θ(p).

Because this expansion is generated by iteration of (27), the sequences
defining collision histories can be obtained recursively. This allows us to refine
the Duhamel expansion by using stopping rules that depend on the type of
collision history. We call a sequence nonrepetitive if the only repetitions in
potential labels γ occur in gates (immediate recollisions). The iteration of
(27) is stopped when adding a new entry to the sequence makes it violate this
condition. This can happen because of a recollision, a nested recollision, or a
triple collision. The precise definition of these recollision types is given in [11].
The iteration is also stopped when the last entry in the sequence causes the
total number of gates and ϑ’s to reach 2. If the sequence stays nonrepetitive
and the total number of gates and ϑ’s stays below 2, the iteration is stopped
when the number of non-gate potential labels reaches

K = λ−δ(λ2t) . (31)

Note that K is much bigger than the expected typical number of collisions,
λ2t.

We denote the sum of the truncated elementary non-repetitive wave func-
tions with at most one λ2 power from the non-skeleton indices or ϑ’s and with
K skeleton indices by ψ(≤1),nr

∗s,K . The superscript (≤ 1) refers to the number
of gates and ϑ’s, each of which gives a factor λ2. By this splitting, we arrive
at the following modified Duhamel formula, in which all non-error terms are
nonrepetitive.

Proposition 1. [Duhamel formula] For any K ≥ 1 we have

ψt = e−itHψ0 =
K−1∑

k=0

ψ
(≤1),nr
t,k

(32)

+
∫ t

0

ds e−i(t−s)H
{

ψ
(≤1),nr
∗s,K +

K∑

k=0

(

ψ
(2),last
∗s,k +ψ(≤1),rec

∗s,k +ψ(≤1),nest
∗s,k +ψ(≤1),tri

∗s,k

)
}

The terms under the integral correspond to the various stopping criteria in-
dicated above. For the precise definition of the corresponding wave functions,
see [11].

The main contribution comes from the non-repetitive sequences with k <
K, i.e. from the first term in (32). The estimate of the terms in the second
line (32) first uses the unitarity of the full evolution

∥
∥
∥

∫ t

0

ds e−i(t−s)Hψ#
s

∥
∥
∥ ≤ t · sup

s≤t
‖ψ#
s ‖ . (33)
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For # = rec, nest, tri we will use the fact the Feynman graphs arising in the
expectation E‖ψ#

s ‖2 contain an additional oscillatory factor, which renders
them smaller than the corresponding non-repetitive term. It turns out that
the oscillation effect from one single recollision, nest or triple collision is
already sufficient to overcome the additional factor t arising from the crude
bound (33). This fact relies on estimates on singular integrals concentrating
on the energy level sets Σe. It is a well-known fact from harmonic analysis,
that such singular integrals can more effectively be estimated for convex level
sets. This is why the non-convexity of the energy shells is a major technical
complication for the discrete model in comparison with the continuous case,
where the level sets are spheres.

Non-skeleton labels also give rise to a smallness effect due to a cancellation
between gates and ϑ’s, however, one such cancellation would not be sufficient
to beat the t–factor. This is why at least two such cancellations are necessary
in ψ(2),last

∗s,k . Finally, the term ψ
(≤1),nr
∗s,K is small because it has unusually many

collisions, thanks to the additional factor λ−δ in the definition of K.
In this exposition we focus only on the non-repetitive terms, ψ(≤1),nr

t,k ,
because estimating them involves the main new ideas. The error terms are
estimated by laborious technical modifications of these ideas.

3.3 The L2 Norm of the Non-Repetitive Wavefunction

We first estimate the L2 norm of the fully expanded wave function with no
gates or ϑ, ψ(0),nr

t,k . This is the core of our analysis.

Feynman Graphs

The wavefunction

ψ
(0),nr
t,k =

∑

γ

∫ t

0

[dsj ]k+1
1 e−isk+1H0Vγk

e−iskH0Vγk−1 . . . e
−is2H0Vγ1e

−is1H0ψ0

where the summation is over all sequences for which the potential labels γi
are all different. Therefore every term in

E‖ψ(0),nr
t,k ‖2 =

∑

γ,γ′

E
∫

ψt,γψt,γ′

has 2k potential terms, and their expectation,

E Vγ1Vγ2 . . . Vγk
Vγ′1Vγ′2 . . . Vγ′k ,

is zero, using EVγ = 0, unless the potentials are paired. Since there is no
repetition within γ and γ′, all these pairings occur between γ and γ′, therefore
every pairing corresponds to a permutation on {1, 2, . . . , k}. The set of such
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permutations is denoted by Pk and they can be considered as a map between
the indices of the γ and γ′ labels.

We recall the following identity from Lemma 3.1 of [10]

∫ t

0

[dsj ]k+1
1

k+1∏

j=1

e−isjω(pj) =
ieηt

2π

∫

R

dα e−iαt
k+1∏

j=1

1
α− ω(pj) + iη

for any η > 0. We will choose η := t−1. Therefore, we have

E‖ψ(0),nr
t,k ‖2 =

λ2ke2tη

(2π)2
∑

σ∈Pk

∑

γ1,...,γk
γi �=γj

∫

dpdp̃ δ(pk+1 − p̃k+1)

(34)

× E
k∏

j=1

V̂γj
(pj+1 − pj)V̂γj

(p̃σ(j)+1 − p̃σ(j))M(k,p, p̃, η)ψ̂0(p1)ψ̂0(p̃1)

with p = (p1, p2, . . . , pk+1),
∫

dp :=
∫

(Td)k+1 dp1dp2 . . . dpk+1, similarly for p̃
and dp̃, and

Mη(k,p, p̃) :=
∫ ∫

R

dαdβ ei(α−β)t
(
k+1∏

j=1

1
α− ω(pj) − iη

1
β − ω(p̃j) + iη

)

.

(35)
We compute the expectation:

E
k∏

j=1

V̂γj
(pj+1 − pj)V̂γj

(p̃σ(j)+1 − p̃σ(j))

=
∑

γ1,...,γk
γi �=γj

k∏

j=1

eiγj(pj+1−pj−(p̃σ(j)+1−p̃σ(j))) . (36)

In the continuous model this formula also contains a product of B̂-terms,
where B was the single site potential function in (5). These factors are in-
cluded into the definition of Mη. Most importantly, they provide the neces-
sary decay in the momentum variables in the case of non-compact momentum
space. A similar idea was used in [10].

Due to the restriction γi �= γj , (36) is not a simple product of delta func-
tions in the momenta. We have to use a connected graph expansion that is
well known in the polymer expansions of field theory (see, e.g. [23]). We do
not give the details here, we only note that the result is a weighted sum over
partitions of the index set {1, . . . , k}. Each term in the sum is a product of
delta functions labelled by the lumps of the partition and each delta funtion
imposes the Kirchoff Law for the incoming and outgoing momenta of the
lump and its σ-image. The trivial partition, where each lump has a single



Towards the Quantum Brownian Motion 247

element, carries the main contribution. Estimating the terms with nontrivial
partitions can be reduced to estimates for the trivial partition [11]. We there-
fore discuss only the contribution from the trivial partition to E‖ψ(0),nr

t,k ‖2,
given by

∑

σ∈Pk
Vη(k, σ), where

Vη(k, σ) :=
λ2ke2tη

(2π)2

∫

dpdp̃Mη(k,p, p̃)δ(p̃k+1 − pk+1)ψ̂0(p1)ψ̂0(p̃1)

×
k∏

i=1

δ
(
pi+1 − pi − (p̃σ(i)+1 − p̃σ(i))

)
(37)

This complicated formula can be encoded by a Feynman graph and Vη(k, σ) is
called the value or amplitude of the graph. The Feynman graph for the trivial
partition corresponds to the usual Feynman graphs for the Gaussian case
discussed in [10] and we briefly describe their construction. A Feynman graph
consists of two directed horizontal lines (upper and lower) with k collision
vertices on each that represent the collision histories of ψ̄ and ψ, respectively.
These two lines are joined at the two ends. This corresponds to evaluating
the L2-norm on one end and inserting the initial wavefunction ψ0 on the
other end. Each horizontal segment carries a momentum, p1, p2, . . . pk+1 and
p̃1, p̃2, . . . p̃k+1 and a corresponding (renormalized) propagator, (α− ω(pj)−
iη)−1 and (β−ω(p̃j)+ iη)−1. Here α and β are the dual variables to the time
on each line and they will be integrated out, see (35). Finally, the collision
vertices are paired. Each pairing line joins an upper and a lower vertex and
thus can be encoded with a permutation σ ∈ Pk. It is useful to think of
the momenta as flowing through the lines of the graph. The delta function
associated to each pairing line in the value of the graph (37) then expresses
the Kirchhoff Law for the flow of momenta adjacent to the two vertices.

A typical graph with trivial partition is shown on Fig. 1. For the special
case of the identity permutation σ = id we obtain the so-called ladder graph
(Fig. 2). The following proposition shows that the ladder gives the main
contribution.

p

pp
p

p
p 1

1

2

2

k+1

k+1

ψ

ψ

Fig. 1. Typical Feynman graph with no lumps
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Fig. 2. Ladder graph

The Main Contribution is the Ladder

Proposition 2 (L2-estimate). Let η−1 := t, t = O(λ2+κ) and k ≤ K :=
λ−δ(λ2t). For sufficiently small λ, κ and δ there exists a positive number
c1(κ, δ) such that

E‖ψ(0),nr
t,k ‖2 = Vη(k, id) +Oδ

(

λc1(κ,δ)
)

. (38)

The threshold values for κ, δ and the explicit form of c1(κ, δ) are found in [11].

Sketch of the proof. As mentioned above, we discuss only how to estimate
the contributions from the trivial partition, but for an arbitrary permutation
σ.

Given a permutation σ ∈ Pk, we define a (k+1)×(k+1) matrixM = M(σ)
as follows

Mij(σ) :=






1 if σ̃(j − 1) < i ≤ σ̃(j)
−1 if σ̃(j) < i ≤ σ̃(j − 1)
0 otherwise

(39)

where, by definition, σ̃ is the extension of σ to a permutation of {0, 1, . . . , k+
1} by σ̃(0) := 0 and σ̃(k + 1) := k + 1. It is easy to check that

Vη(k, σ) :=
λ2ke2tη

(2π)2

∫

dpdp̃ Mη(k,p, p̃)
k+1∏

i=1

δ



 p̃i −
k+1∑

j=1

Mijpj



 , (40)

in other words, the matrix M encodes the dependence of the p̃-momenta on
the p-momenta. This rule is transparent in the graphical representation of
the Feynman graph: the momentum pj appears in those p̃i’s which fall into
its “domain of dependence”, i.e. the section between the image of the two
endpoints of pj , and the sign depends on the ordering of these images (see
Fig. 3).

The matrix M(σ) has several properties that follow easily from this struc-
ture:

Lemma 1. For any permutation σ ∈ Pk the matrix M(σ) is
(i) invertible;
(ii) totally unimodular, i.e. any subdeterminant is 0 or ±1.



Towards the Quantum Brownian Motion 249

p
j

These momenta equal  + p  + ... These momenta equal    p  + ...j j

p
j

Fig. 3. Domain of momenta dependencies

The following definition is crucial. It establishes the necessary concepts
to measure the complexity of a permutation.

Definition 1 (Peak, valley and slope). Given a permutation σ ∈ Pk let
σ̃ be its extension. A point (j, σ(j)), j ∈ Ik := {1, 2, . . . , k}, on the graph
of σ is called peak if σ̃(j − 1) > σ(j) < σ̃(j + 1), it is called valley if
σ̃(j − 1) < σ(j) > σ̃(j + 1), otherwise it is called slope. Additionally, the
point (k + 1, k + 1) is also called valley. The set I = {1, 2, . . . , k + 1} is
partitioned into three disjoint subsets, I = Ip ∪ Iv ∪ Is, such that i ∈ Ip, Iv
or Is depending on whether (σ̃−1(i), i) is a peak, valley or slope, respectively.
Finally, an index i ∈ Iv∪Is is called ladder index if |σ̃−1(i)−σ̃−1(i−1)| = 1.
The set of ladder indices is denoted by I� ⊂ I and their cardinality is denoted
by � = �(σ) := |I�|. The number of non-ladder indices, d(σ) := k + 1 − �(σ)
is called the degree of the permutation σ.

Remarks: (i) The terminology of peak, valley, slope, ladder comes from the
graph of the permutation σ̃ viewed as a function on {0, 1, . . . , k + 1} in a
coordinate system where the vertical axis is oriented downward.

(ii) For σ = id we have Ip = ∅, Is = {1, 2, . . . , k}, Iv = {k + 1} and
I� = {1, 2, . . . , k + 1}. In particular, d(id) = 0 and d(σ) > 0 for any other
permutation σ �= id.

The following theorem shows that the degree of the permutation d(σ)
measures the size of Vη(k, σ). This is the key theorem in our method and we
will sketch its proof separately in Sect. 3.4.

Theorem 3. Let η−1 := t, t = O(λ2+κ) with a sufficiently small κ. Let
σ ∈ Pk and assume that k ≤ K = λ−δ(λ2t). For sufficiently small κ and δ
there exists c2(κ, δ) > 0 such that

|Vη(k, σ)| ≤
(

Cλc2(κ,δ)
)d(σ)

, λ� 1 . (41)

This theorem is complemented by the following lemma:
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Lemma 2. Let k = O(λ−κ−δ), d > 0 integer and let γ > κ+ δ. Then
∑

σ∈Pk
d(σ)≥d

λγd(σ) ≤ O
(

λd(γ−κ−δ)
)

(42)

for all sufficiently small λ.

The proof follows from the combinatorial estimate on the number of permu-
tations with a given degree:

#{σ ∈ Pk : d(σ) = d} ≤ (Ck)d .

From Theorem 3 and Lemma 2 we immediately obtain an estimate on the
contribution of the trivial lumps to E‖ψ(0),nr

t,k ‖2 if κ and δ are sufficiently
small: ∑

σ∈Pk
σ �=id

|Vη(k, σ)| ≤ Oδ

(

λc3(κ,δ)
)

(43)

with some appropriate c3(κ, δ) > 0.

3.4 Sketch of the Proof of the Main Technical Theorem

In this section we explain the proof of Theorem 3. We set

Eη(M) : = λ2k

∫ ∫ 4d

−4d

dαdβ
∫

dp
k+1∏

i=1

1
|α− ω(pi) − iη|

×
k+1∏

j=1

1

|β − ω(
∑k+1
�=1 Mj�p�) + iη|

. (44)

For the continuous model, the definition includes the B̂ factors to ensure the
integrability for the large momentum regime. It is easy to check that Vη(k, σ)
is estimated by Eη(M(σ)) modulo constant factors and negligible additive
terms coming from the regime where α or β is big.

The denominators in this multiple integral are almost singular in certain
regimes of the high dimensional space of all momenta. The main contribution
comes from the overlap of these singularities. The overlap structure is encoded
in the matrixM , hence in the permutation σ, in a very complicated entangled
way. Each variable pj may appear in many denominators in (44), so successive
integration seems very difficult. We could not find the exact order (as a power
of λ) of this multiple integral but we conjecture that true order is essentially
λ2d(σ). Our goal in Theorem 3 is to give a weaker bound of order λcd(σ), i.e.
that is still a λ-power linear in the degree, but the coefficient considerably
smaller than 2.

Notice that the α-denominators in (44) correspond to the columns of M
and the β-denominators corresponds to the rows. For this presentation we
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will use j to label row indices and i to label column indices. We recall the
sets Iv, Ip, I� from Definition 1 and we will view these sets as subsets of the
row indices of M .

First we notice that if j ∈ (I� \ Iv), i.e. j is a non-valley ladder row, then
there exists a column index i = c(j) such that the momentum pi appears only
in the j-th β-denominator. In other words, the i-th column of M has a single
nonzero element (that is actually ±1) and it is in the j-th row. Therefore the
dpi integral can be performed independently of the rest of the integrand by
using the following elementary but quite involved bound for small κ:

sup
w,α,β

∫

Td

dpi
λ2

|α− ω(pi) − iη| |β − ω(±pi + w) + iη| ≤ 1 +O(λ1/4) . (45)

Note that the constant of the main term is exactly 1. This fact is important,
since in graphs with low degree this estimate has to be raised to a power
|I� \ Iv| that may be comparable with k. Clearly for k ≤ K ∼ λ−κ−δ and
κ+ δ < 1/4 we have

(

1 +O(λ1/4)
)k

≤ const , (46)

but had 1 been replaced with a bigger constant in (45), we would obtain an
exponentially big factor (const)k that would not be affordable. The precise
constant 1 in the estimate (45) is related to the appropriate choice of the
renormalization θ(p) in ω(p).

After the non-valley ladder rows are integrated out, and the corresponding
rows and columns are removed from the matrixM , we obtain a smaller matrix
M (1) describing the remaining denominators. In M (1) we keep the original
labelling of the rows from M .

Now we estimate some of the β-denominators in (44) by L∞ norm, i.e. by
η−1. This is a major overestimate, but these denominators are chosen in such
a way that the entangled structure imposed by M becomes much simpler and
many other denominators can be integrated out by L1-bounds that are only
logarithmic in λ.

We start with estimating all β-denominators in rows j ∈ Ip by the trivial
L∞-norm. The corresponding rows are removed from M (1), in this way we
obtain a matrix M (2). Let

I∗ := I \
(

Ip ∪ (I� \ Iv)
)

be the remaining row indices after removing the peaks and the non-valley
ladders.

Then we inspect the remaining rows j ∈ I∗ of M (2) in increasing order.
The key observation is that for each j ∈ I∗ there exists a column index,
i = c(j), such that the variable pi appears only in the j-th β-denominator,
provided that all β-denominators with j′ < j have already been integrated
out. In view of the structure of M (1), it means that for any j ∈ I∗ there exists
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a column i = c(j) such that the only nonzero element among {M (2)
ij′ : j′ ≥ j}

is M (2)
ij . This fact follows from the structure of M(σ) and from the fact that

all rows with j ∈ Ip have been removed.
This property allows us to remove each remaining β-denominator, one by

one, by estimating integrals of the type
∫

Td

dpi
1

|α− ω(pi) − iη|
1

|β − ω(±pi + w) + iη| ≤
Cη−τ

|w| , (47)

where w is a linear combination of momenta other than pi. The absolute
value |w| is interpreted as the distance of w from the nearest critical point
of the dispersion relation e(p). The variable pi at this stage of the procedure
appears only in these two denominators.

The exponent τ can be chosen zero (with logarithmic corrections) for the
continuous model and this fact has already been used in [10]. For the discrete
model we can prove (47) with τ = 3/4 + 2κ and we know that the exponent
cannot be better than 1/2. The reason for the weaker estimate is the lack
of convexity of the level set Σe. Replacing ω(p) with e(p) for a moment, the
inequality (47) with τ = 0 essentially states that the level set {α = e(p)}
and its shifted version {β = e(p + w)} intersect each other transversally,
unless w is close to zero. Indeed, the transversal intersection guarantees that
the volume of the p values, where both denominators are of order η, is of
order η2. Then a standard argument with dyadic decomposition gives the
result with a logarithmic factor. For translates of spheres the transversal
intersection property holds, unless w ∼ 0. However, in certain points of the
level sets Σe of the discrete dispersion relation the curvature vanishes, in fact
Σe even contains straight lines for 2 ≤ e ≤ 4. The transversal intersection
fails in certain regions and results in a weaker bound.

Neglecting the point singularity |w|−1 in (47) for a moment (see Sect. 3.5
later), we easily see that with this algorithm one can bound Eη(M(σ)) by
λ2(k−q)η−pη−τ(k−p−q), modulo logarithmic factors, where p = |Ip| is the num-
ber of peak indices and q := |I�\Iv| is the number of non-valley ladder indices.
From the definitions it follows that the sets Iv, Ip and I� \ Iv are disjoint and
|Iv| = p+ 1. Thus we have 2p+ 1 + q ≤ k + 1. Therefore

λ2(k−q)η−p(1−τ)−τ(k−q) ≤ (λ4tτ+1)(k−q)/2 ≤ (λ4tτ+1)
1
2 [d(σ)−1] (48)

since q ≤ �. If τ < 1, then with a sufficiently small κ we see that λ4tτ+1 is
a positive power of λ. Thus we obtain a bound where the exponent of λ is
linear in d(σ). With a more careful estimate one can remove the additional
−1 in the exponent. In particular, for the continuous case with τ = 0 this
argument works up to κ < 2.

We end this section with a remark. Apparently the bound κ < 2 (or,
equivalently, t � λ−4) shows up in two different contexts in this argument.
To avoid misunderstandings, we explain briefly that neither of these two
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appearences is the genuine signature of the expected threshold κ = 2 for
our expansion method to work. The true reason is the one mentioned in
the introduction: even the best possible bound, λ2d(σ), on the graph with
permutation σ, cannot beat the k! combinatorics of the graphs beyond κ = 2.

In the argument above, on one hand, κ < 2 is related to the error term in
the ladder calculation (45). This error term can be improved to λ2| log λ| and
it is apparently due to the fact that the renomalization term θ(p) was solved
only up to lowest order. An improvement may be possible by including more
than the lowest order of the self-energy.

The second apperance of κ < 2, or t � λ−4, at least for the continu-
ous model, is in (48) and it is due to the fact that certain β-denominators
are overestimated by L∞. This is again a weakness of our method; we did
overestimates in order to simplify the integrand.

3.5 Point Singularities

The argument in the previous section has neglected the point singularity
arising from (47). While a point singularity is integrable in d ≥ 3 dimensions,
it may happen that exactly the same linear combinations of the independent
variables keep on accumulating by the repeated use of the bound (47). In that
case at some point a high negative power of |w| needs to be integrated. While
it is possible to improve the estimate (47) by changing the denominator on
the right hand side to |w|+η, this would still yield further negative η-powers.

It is easy to see that this phenomenon does occur. Primarily this would
have occurred if we had not treated the ladders separately: if pi’s are ladder
variables, then the corresponding w momenta in (47) are indeed the same.
Although we have removed the ladders beforehand, the same phenomenon
occurs in case of a graph which contains ladder only as a minor but not as a
subgraph. Our separate ladder integration procedure (45) can be viewed as a
very simple renormalization of the ladder subgraphs. The correct procedure
should renormalize all ladder minors as well.

To cope with this difficulty, we have to follow more precisely the point
singularities. To this end, we define the following generalization of Eη(M).
For any index set I ′ ⊂ I = {1, 2, . . . , k+ 1}, any |I ′| × (k+ 1) matrix M , any
ν integer and any ν × (k + 1) matrix E we define

Eη(I ′,M, E) := λ2ke2tη
∫ ∫ 4d

−4d

dαdβ
∫

dp

×
(
∏

i∈I′

1
|α− ω(pi) − iη|

1

|β − ω
(∑k+1

j=1 Mijpj
)

+ iη|

)
ν∏

µ=1

1

|
∑k+1
j=1 Eµjpj |

(49)
We follow the same procedure as described in Sect. 3.4, but we also keep track
of the evolution of the point singularity matrix E . At the beginning I ′ = I,
ν = 0 and E is not present. After the first non-ladder type integration, a
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point singularity will appear from (47). Some of the point singularities may
get integrated out later as one of their variables become integration variable.
Therefore we will need the following generalization of (47):

Lemma 3. There exists a constant C such that for any index set A

sup
|α|,|β|≤4d

∫
1

|α− ω(p) − iη| |β − ω(r + p) + iη|
∏

a∈A

1
|ra + p| dp

≤ Cη−τ
′ | log η|3

∑

a∈A






∏

a′∈A
a′ �=a

1
|ra − ra′ |






1
|r| . *+ (50)

For the continuous model τ ′ = 0 while for the discrete model τ ′ = 7
8 + 2κ.

Using this lemma, we can keep record of the evolution of the point singularity
matrix E at an intermediate step of our integration algorithm. These matrices
change by simple operations reminiscent to the Gaussian elimination.

Three complications occur along this procedure, we briefly describe how
we resolve them:

(1) The inequality (50) does not allow higher order point singularities.
Although it is possible to generalize it to include such singularities as well,
we followed a technically simpler path. In addition to the indices j ∈ Ip,
we select further β-denominators that we estimate by the trivial L∞ bound.
These additional indices are chosen in such a way, that (i) the number of
remaining rows be at least 1

3d(σ); (ii) the point singularity matrix be of full
rank at every step of the algorithm. This second criterion guarantees that
no higher order point singularities occur. Since every E can be derived from
M by a procedure that is close to Gaussian elimination and M is invertible
(Lemma 1), the full-rank property is relatively easy to guarantee.

(2) The full-rank property actually needs to be guaranteed in a quantita-
tive way, at least the entries of E needs to be controlled. These entries appear
in the point singularity denominators of (50) and their inverses would ap-
pear in the estimate. The key observation is that each entry of every matrix
E along the procedure is always 0, 1 or −1. It is actually easier to prove a
stronger statement, namely that every E is a totally unimodular matrix. The
proof follows from the fact that every E can be derived from M by elementary
Gaussian elimination steps plus zeroing out certain rows and columns. Such
steps preserve total unimodularity and M is totally unimodular by Lemma
1.

(3) After all β-denominators are eliminated, we are left with an integral
of the form

Eη(J, ∅, E) :=
∫ 4d

−4d

dα
∫ (

∏

i∈J
dpi

)
∏

i∈J

1
|α− ω(pi) − iη|

ν∏

µ=1

1
|
∑

i∈J Eµipi|
(51)



Towards the Quantum Brownian Motion 255

for some index set J and some point singularity matrix obtained along the
integration procedure. Without the point singularities, this integral could be
estimated by the |J |-th power of | log η|. Since E is totally unimodular, a
similar estimate can be obtained for (51) as well.

4 Computation of the Main Term and Its Convergence
to a Brownian Motion

Our goal is to compute the Wigner distribution EW ε
ψt

(X, v) with t = λ−2−κT

and ε = λ2+κ/2. From Proposition 2, and similar bounds on the repetitive
terms in (32), we can restrict our attention to the ladder graph. The following
lemma is a more precise version of the ladder integration Lemma (45) and
it is crucial to this computation. We present it for the more complicated
discrete case. The proof is a tedious calculation in [11].

Lemma 4. Suppose f(p) is a C1 function on Td. Recall 0 < κ < 1/16 and
define γ := (α+β)/2. Let η satisfy λ2+4κ ≤ η ≤ λ2+κ. Then for |r| ≤ λ2+κ/4

we have,
∫

λ2f(p)
(α− ω(p− r) − iη)(β − ω(p+ r) + iη)

dp (52)

=−2πiλ2

∫
f(p) δ(e(p) − γ)

(α− β) + 2(∇e)(p) · r − 2i[λ2ImΘ(γ) + η]
dp+O(λ1/2−8κ| log λ|).

Since the Boltzmann collision kernel is uniform on the energy shell, the
calculation of EW ε

ψt
(X, v) is more straightforward for the discrete case. We

present the sketch of this calculation, the continuous model requires a little
more effort at this stage.

Let ε = λ2+κ/2 be the space scale. After rescaling the Wigner function
at time t, we compute Ŵ (εξ, v) tested against a smooth, decaying function
O(ξ, v). In particular ξ is of order 1. After the application of Lemma 4 (with
v = vk+1) and change of variables a := (α + β)/2 and b := λ−2(α − β), we
obtain

〈O,EŴ 〉 :=
∫

dvdξ O(ξ, v)EŴ (εξ, v)=
∑

k≤K

∫ ∫

R

dαdβ
(2π)2λ2

∫

dv eit(α−β)+2ηt

× O(ξ, vk+1)Ŵ0(εξ, v1)
k+1∏

j=1

λ2

(

α− ω(vi + εξ
2 ) − iη

)(

β − ω(vi − εξ
2 ) + iη

)

≈
∑

k≤K

∫ ∫

R

dadb
(2π)2

eitλ
2b

∫



∏

j

−2πi δ(e(vj) − a)dvj
b+ λ−2ε∇e(vj) · ξ − 2iI(a)





× Ŵ0(εξ, v1)O(ξ, vk+1) ,
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where we defined I(γ) := ImΘ(γ) for brevity. We used η = λ2+κ to estimate
the error terms. The main term (left hand side above) however, is independent
of η, so we can choose η = λ2+4κ for the rest of the calculation and we note
that Lemma 4 holds for this smaller η as well. This is the reason why the
e2ηt factor is negligible.

We expand the fraction up to second order in ε, we get

−i
b+ λ−2ε∇e(vj) · ξ − 2iI(a)

≈ −i
b− 2iI(a)

[

1 − λ−2ε∇e(vj) · ξ
b− 2iI(a)

+
λ−4ε2[∇e(vj) · ξ]2

(b− 2iI(a))2

]

By symmetry of the measure 2πδ(e(v)−a)dv under the sign flip, v → −v and
using (∇e)(v) = −∇e(−v), we see that the first order term vanishes after the
integration. We also define the matrix

D(a) :=
1

2 I(a)

∫

dµa(v)
∇e(v)

2π
⊗ ∇e(v)

2π

After integrating out all momenta and changing the b variable we obtain

〈O,EŴ 〉 ≈
∑

k≤K

∫

dξ
∫

R

2I(a)da
2π

〈O(ξ, ·)〉a〈Ŵ0(εξ, ·)〉a
∫

R

db
2π

e2iλ
2tbI(a)

×
( −i
b− i

)k+1

×
[

1 +
(2π)2ε2λ−4〈ξ,D(a)ξ〉

2I(a)
· 1
(b− i)2

]k+1

We sum up the geometric series and perform a residue calculation to eval-
uate the db integral. We obtain that the main contribution comes from
k ∼ 2λ2tI(e), so the truncation k ≤ K can be neglected and the result
of the db integration is

∫

R

db
2π

(

· · ·
)

≈ exp

(

− (2π)2ε2t〈ξ,D(e)ξ〉
λ2

)

To obtain a nontrivial limit, ε2t/λ2 ∼ 1 is necessary. Noting that t = λ−2−κT
with T = O(1), we see that indeed the space must be rescaled by ε = λ2+κ/2.
Finally

〈O,EŴ 〉 ≈
∫

dξ
∫

R

2I(a)da
2π

〈O(ξ, ·)〉a〈Ŵ0(εξ, ·)〉a exp
(

−(2π)2T 〈ξ,D(a)ξ〉
)

.

Since exp[−(2π)2T 〈ξ,D(a)ξ〉] is the fundamental solution to the heat equa-
tion (15), from the definition of 〈·〉, and after inverse Fourier transform we
obtain (17). This completes the sketch of the calculation of the main term.
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7. D. Dürr, S. Goldstein, J. Lebowitz: Commun. Math. Phys. 78, 507 (1980/81).
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Abstract. We consider two models which exhibit equilibrium BEC superradiance.
They are related to two different types of superradiant scattering observed in recent
experiments. The first one corresponds to the amplification of matter-waves due to
Raman superradiant scattering from a cigar-shaped BE condensate, when the re-
coiled and the condensed atoms are in different internal states. The main mechanism
is stimulated Raman scattering in two-level atoms, which occurs in a superradiant
way. Our second model is related to the superradiant Rayleigh scattering from a
cigar-shaped BE condensate. This again leads to a matter-waves amplification but
now with the recoiled atoms in the same state as the atoms in the condensate.
Here the recoiling atoms are able to interfere with the condensate at rest to form
a matter-wave grating (interference fringes) which has been recently observed in
experiments.

1 Introduction

We report here our recent results on the equilibrium Bose-Einstein Conden-
sation (BEC) superradiance motivated by discovery of the Dicke superradi-
ance and BEC matter waves amplification [1]– [5]. In these experiments the
condensate is illuminated with a laser beam, the so called dressing beam.
The BEC atoms then scatter photons from this beam and receive the cor-
responding recoil momentum producing coherent four-wave mixing of light
and atoms [5]. The aim of our project is the construction of soluble statistical
mechanical models for these phenomena.

In the first paper [6], motivated by the principle of four-wave mixing
of light and atoms [5], we considered two models with a linear interaction
between Bose atoms and photons, one with a global gauge symmetry and
another one in which this symmetry is broken. We proved that there is

∗Talk given by Valentin Zagrebnov.

J.V. Pulé et al.: Bose-Einstein Condensation and Superradiance, Lect. Notes Phys. 690,
259–278 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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equilibrium superradiance and also that there is an enhancement of con-
densation compared with that occurring in the case of the free Bose gas.

In the second paper [7] we formalized the ideas described in [4,5] by con-
structing a thermodynamically stable model whose main ingredient is the
two-level internal states of the Bose condensate atoms. We showed that our
model is equivalent to a bosonized Dicke maser model. Besides determining
its equilibrium states, we computed and analyzed the thermodynamic func-
tions, again finding the existence of a cooperative effect between BEC and
superradiance.

In our last paper [8] we study the effect of momentum recoil which was
omitted in [6] and [7]. There we consider two models motivated by two differ-
ent types of superradiant scattering observed in recent experiments carried
out by the MIT group, see e.g. [1]– [3]. Our first model (Model 1 ) corresponds
to the Raman superradiant scattering from a cigar-shaped BE condensate
considered in [1]. This leads to the amplification of matter waves (recoiled
atoms) in the situation when amplified and condensate atoms are in differ-
ent internal states. The main mechanism is stimulated Raman scattering in
two-level atoms, which occurs in a way similar to Dicke superradiance [7].

Our second model (Model 2 ) is related to the superradiant Rayleigh scat-
tering from a cigar-shaped BE condensate [2,3]. This again leads to a matter-
wave amplification but now with recoiled atoms in the same state as the
condensate at rest. This is because the condensate is now illuminated by an
off-resonant pump laser beam, so that for a long-pulse the atoms remain in
their lower level states. In this case the (non-Dicke) superradiance is due to
self-stimulated Bragg scattering [3].

From a theoretical point of view both models are interesting as they de-
scribe homogeneous systems in which there is spontaneous breaking of trans-
lation invariance. In the case of the Rayleigh superradiance this means that
the phase transition corresponding to BEC is at the same time also a transi-
tion into a matter-wave grating i.e. a “frozen” spatial density wave structure,
see Sect. 3. The fact that recoiling atoms are able to interfere with the con-
densate at rest to form a matter-wave grating (interference fringes) has been
recently observed experimentally, see [3]– [5] and discussion in [9] and [10].

In the case of the Raman superradiance there is an important difference:
the internal atomic states for condensed and recoiled bosons are orthogonal.
Therefore these bosons are different and consequently cannot interfere to
produce a matter-wave grating as in the first case. Thus the observed spatial
modulation is not in the atomic density of interfering recoiled and condensed
bosons, but in the off-diagonal coherence and photon condensate producing
a one-dimensional (corrugated) optical lattice, see Sect. 3 and discussion in
Sect. 4.

To make the definition of our models more exact consider a system of
identical bosons of mass m enclosed in a cube Λ ⊂ R

ν of volume V = |Λ|
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centered at the origin. We impose periodic boundary conditions so that the
momentum dual set is Λ∗ = {2πp/V 1/ν |p ∈ Z

ν}.
In Model 1 the bosons have an internal structure which we describe by

considering them as two-level atoms, the two levels being denoted by σ = ±.
For momentum k and level σ, a∗k,σ and ak,σ are the usual boson creation and
annihilation operators with [ak,σ, a∗k′,σ′ ] = δk,k′δσ,σ′ . Let ε(k) = ‖k‖2/2m be
the single particle kinetic energy and Nk,σ = a∗k,σak,σ the operator for the
number of particles with momentum k and level σ. Then the total kinetic
energy is

T1,Λ =
∑

k∈Λ∗

ε(k)(Nk,+ +Nk,−) (1)

and the total number operator is N1,Λ =
∑

k∈Λ∗(Nk,+ + Nk,−). We define
the Hamiltonian H1,Λ for Model 1 by

H1,Λ = T1,Λ + U1,Λ (2)

where

U1,Λ = Ω b∗qbq +
g

2
√
V

(a∗q+a0−bq + aq+a
∗
0−b

∗
q) +

λ

2V
N2

1,Λ , (3)

g > 0 and λ > 0. Here bq, b∗q are the creation and annihilation operators of
the photons, which we take as a one-mode boson field with [bq, b∗q ] = 1 and a
frequency Ω. g is the coupling constant of the interaction of the bosons with
the photon external field which, without loss of generality, we can take to be
positive as we can always incorporate the sign of g into b. Finally the λ-term
is added in (2) to obtain a thermodynamical stable system and to ensure the
right thermodynamic behaviour.

In Model 2 we consider the situation when the excited atoms have already
irradiated photons, i.e. we deal only with de-excited atoms σ = −. In other
words, we neglect the atom excitation and consider only elastic atom-photon
scattering. This is close to the experimental situation [3]– [5], in which the
atoms in the BE condensate are irradiated by off-resonance laser beam. As-
suming that detuning between the optical fields and the atomic two-level
resonance is much larger that the natural line of the atomic transition (su-
perradiant Rayleigh regime [2, 3]) we get that the atoms always remain in
their lower internal energy state. We can then ignore the internal structure
of the atoms and let a∗k and ak be the usual boson creation and annihilation
operators for momentum k with [ak, a∗k′ ] = δk,k′ , Nk = a∗kak the operator for
the number of particles with momentum k,

T2,Λ =
∑

k∈Λ∗

ε(k)Nk (4)

the total kinetic energy, and N2,Λ =
∑

k∈Λ∗ Nk the total number operator.
We then define the Hamiltonian H(2)

Λ for Model 2 by
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H2,Λ = T2,Λ + U2,Λ (5)

where
U2,Λ = Ω b∗qbq +

g

2
√
V

(a∗qa0bq + aqa
∗
0b

∗
q) +

λ

2V
N2

2,Λ . (6)

Our main results concerning the Models 1 and 2 can be summarized as
follows:

– We give a complete rigorous solution of the variational principle for the
equilibrium state of Model 1, and we compute the pressure as a function
of the temperature and the chemical potential. We show (see Sect. 2) that
Model 1 manifests the Raman superradiance and we prove for this model
the occurrence of spontaneous breaking of translation invariance of the
equilibrium state.

– The analysis of the Model 2 for the Rayleigh superradiance is very similar
and therefore we do not repeat it but simply state the results in Sect. 3.

– In Sects. 3 and 4 we relate the spontaneous breaking of translation in-
variance of the equilibrium state with spatial modulation of matter-waves
(matter-wave grating) in both models.

We finish this introduction with the following comments concerning in-
terpretation of the Models 1 and 2 :

– In our models we do not use for effective photon-boson interaction the
four-wave mixing principle, see [5,6,11]. The latter seems to be important
for the geometry, when a linearly polarized pump laser beam is incident
in a direction perpendicular to the long axis of a cigar-shaped BE conden-
sate, inducing the “45◦-recoil pattern” picture [1]– [3]. Instead as in [7],
we consider a minimal photon-atom interaction only with superradiated
photons, cf [12]. This corresponds to superradiance in a “one-dimensional”
geometry, when a pump laser beam is collimated and aligned along the
long axis of a cigar-shaped BE condensate, see [10,13].

– In this geometry the superradiant photons and recoiled matter-waves prop-
agate in the same direction as the incident pump laser beam. If one consid-
ers it as a classical “source” (see [5]), then we get a minimal photon-atom
interaction [7] generalized to take into account the effects of recoil. Notice
that the further approximation of the BEC operators by c-numbers leads
to a bilinear photon-atom interaction studied in [5, 6].

– Here we study equilibrium BEC superradiance while the experimental sit-
uation (as is the case with Dicke superradiance [14]) is more accurately
described by non-equilibrium statistical mechanics. However we believe
that for the purpose of understanding the quantum coherence interaction
between light and the BE condensate our analysis is as instructive and is in
the same spirit as the rigorous study of the Dicke model in thermodynamic
equilibrium, see e.g. [15]– [17].
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– In spite of the simplicity of our exactly soluble Models 1 and 2 they are
able to demonstrate the main features of the BEC superradiance with re-
coil: the photon-boson condensate enhancement with formation of the light
corrugated optical lattice and the matter-wave grating. The corresponding
phase diagrams are very similar to those in [7]. However, though the type
of behaviour is similar, this is now partially due to the momentum recoil
and not entirely to the internal atomic level structure.

2 Solution of the Model 1

2.1 The Effective Hamiltonian

We start with the stability of Hamiltonian (2). Consider the term U1,Λ in (3).
This gives

U1,Λ = Ω

(

b∗q +
g

2Ω
√
V
aq+a

∗
0−

)(

bq +
g

2Ω
√
V
a∗q+a0−

)

− g2

4Ω2V
N0

−(Nq+ + 1) +
λ

2V
N2

1,Λ ≥ λ

2V
N2

1,Λ − g2

4Ω2V
N0−(Nq+ + 1) . (7)

On the basis of the trivial inequality 4ab ≤ (a + b)2, the last term in the
lower bound in (7) is dominated by the first term if λ > g2/8Ω, that is if
the stabilizing coupling λ is large with respect to the coupling constant g or
if the external frequency is large enough. We therefore assume the stability
condition: λ > g2/8Ω.

Since we want to study the equilibrium properties of the model (2) in the
grand-canonical ensemble, we shall work with the Hamiltonian

H1,Λ(µ) = H1,Λ − µN1,Λ (8)

where µ is the chemical potential. Since T1,Λ and the interaction U1,Λ conserve
the quasi-momentum, Hamiltonian (2) describes a homogeneous (translation
invariant) system. To see this explicitly, notice that the external laser field
possesses a natural quasi-local structure as the Fourier transform of the field
operator b(x):

bq =
1√
V

∫

Λ

dx eiq·xb(x) . (9)

If for z ∈ R
ν , we let τx be the translation automorphism (τzb)(x) =

b(x + z), then τzbq = eiq·zbq and similarly τzak,σ = eik·zak,σ. Therefore, the
Hamiltonian (2) is translation invariant.

Because the interaction (3) is not bilinear or quadratic in the creation
and annihilation operators the system cannot be diagonalized by a standard
symplectic or Bogoliubov transformation. One way to solve the Model 1 is
by applying the so-called effective Hamiltonian method, which is based on
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the fact that an equilibrium state is not determined by the Hamiltonian but
by its Liouvillian [18]. The best route to prove the exactness of the effective
Hamiltonian method in our case (see also [19]) is to use the characterization
of the equilibrium state by means of the correlation inequalities [18, 20]:

A state ω is an equilibrium state for H1,Λ(µ) at inverse temperature β, if
and only if for all local observables A, it satisfies

lim
V→∞

βω ([A∗, [H1,Λ(µ), A]]) ≥ ω(A∗A)ln
ω(A∗A)
ω(AA∗)

. (10)

Clearly only the Liouvillian [H1,Λ(µ), ·] of the Hamiltonian enters into these
inequalities and therefore we can replace H1,Λ(µ) by a simpler Hamiltonian,
the effective Hamiltonian, which gives in the limiting state ω the same Liou-
villian as H1,Λ(µ) and then look for the equilibrium states corresponding to
it. Now in our case for an extremal or mixing state ω we define the effective
Hamiltonian Heff

1,Λ(µ, η, ρ) such that for all local observables A and B

lim
V→∞

ω (A, [H1,Λ(µ), B]) = lim
V→∞

ω
(
A, [Heff

1,Λ(µ, η, ρ), B]
)
. (11)

The significance of the parameters η and ρ will become clear below. One can
then replace (10) by

lim
V→∞

βω
(
[A∗, [Heff

1,Λ(µ, η, ρ), A]]
)
≥ ω(A∗A)ln

ω(A∗A)
ω(AA∗)

. (12)

We can choose Heff
1,Λ(µ, η, ρ) so that it can be diagonalized and thus (12)

can be solved explicitly. For a given chemical potential µ, the inequalities
(12) can have more than one solution. We determine the physical solution
by minimizing the free energy density with respect to the set of states or
equivalently by maximizing the grand canonical pressure on this set. Let

Heff
1,Λ(µ, η, ρ) = (λρ− µ+ ε(q))a∗q+aq+ + (λρ− µ)a∗0−a0− +

g

2
(ηa∗q+bq

+ η̄aq+b
∗
q) +Ω b∗qbq +

g
√
V

2
(
ζa0− + ζ̄a∗0−

)
+ T ′

1,Λ + (λρ− µ)N ′
1,Λ ,(13)

where
T ′

1,Λ =
∑

k∈Λ∗, k �=q
ε(k)Nk,+ +

∑

k∈Λ∗, k �=0

ε(k)Nk,− , (14)

N ′
1,Λ =

∑

k∈Λ∗, k �=q
Nk,+ +

∑

k∈Λ∗, k �=0

Nk,− , (15)

η and ζ are complex numbers and ρ is a positive real number. Then one can
easily check that (11) is satisfied if

η =
ω(a0−)√

V
, ζ =

ω(a∗q+bq)
V

and ρ =
ω(N1,Λ)

V
, (16)
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where the state ω coincides with the equilibrium state 〈·〉Heff
1,Λ(µ,η,ρ) defined

by the effective Hamiltonian Heff
1,Λ(µ, η, ρ). By virtue of (11) and (16) we then

obtain the self-consistency equations

η =
1√
V
〈a0−〉Heff

1,Λ(µ,η,ρ), ζ =
1
V
〈a∗q+bq〉Heff

1,Λ(µ,η,ρ), ρ =
1
V
〈N1,Λ〉Heff

1,Λ(µ,η,ρ) .

(17)
Note that since ζ is a function of η and ρ through (17), we do not need to
label the effective Hamiltonian by ζ. The important simplification here is
that Heff

1,Λ(µ, η, ρ) can be diagonalized:

Heff
1,Λ(µ, η, ρ) = E+,Λ(µ, η, ρ)α∗

1α1 + E−,Λ(µ, η, ρ)α∗
2α2 (18)

+ (λρ− µ)α∗
3α3 + T ′

1,Λ + (λρ− µ)N ′
1,Λ +

g2V |ζ|2
4(µ− λρ)

,

where

E+,Λ(µ, η, ρ) =
1
2
(Ω − µ+ λρ+ ε(q)) +

1
2

√

(Ω + µ− λρ− ε(q))2 + g2|η|2 ,

E−,Λ(µ, η, ρ) =
1
2
(Ω − µ+ λρ+ ε(q)) − 1

2

√

(Ω + µ− λρ− ε(q))2 + g2|η|2 ,

(19)

α1 = aq+ cos θ+bq sin θ, α2 = aq+ sin θ−bq cos θ, α3 = a0−+
g
√
V ζ

2(λρ− µ)
,

(20)
and

tan 2θ = − g|η|
Ω + µ− λρ− ε(q)

. (21)

Note that the correlation inequalities (12) (see [20]) imply that

lim
V→∞

ω (A∗, [H1,Λ(µ), A]) ≥ 0 (22)

for all observables A. Applying (22) with A = a∗0+, one gets λρ − µ ≥ 0.
Similarly, one obtains the condition λρ + ε(q) − µ ≥ 0 by applying (22) to
A = a∗q+. We also have that E+,Λ(µ, η, ρ) ≥ E−,Λ(µ, η, ρ) and E−,Λ(µ, η, ρ) =
0 when |η|2 = 4Ω(λρ+ε(q)−µ)/g2 and then E+,Λ(µ, η, ρ) = Ω−µ+λρ+ε(q).
Thus we have the constraint: |η|2 ≤ 4Ω(λρ+ ε(q)−µ)/g2. We shall need this
information to make sense of the thermodynamic functions below.

The (17) can be made explicit using (18):

η =
g

2(µ− λρ)
ζ , (23)

ζ =
1
2

g|η|
V (E+ − E−)

{
1

eβE+ − 1
− 1
eβE− − 1

}

(24)
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and

ρ = |η|2 +
1
V

1
e−β(µ−λρ) − 1

+
1

2V

{
1

eβE+ − 1
+

1
eβE− − 1

}

− (µ− λρ− ε(q) +Ω)
2V (E+ − E−)

{
1

eβE+ − 1
− 1
eβE− − 1

}

+
1
V

∑

k∈Λ∗, k �=q

1
eβ(ε(k)−µ+λρ) − 1

+
1
V

∑

k∈Λ∗, k �=0

1
eβ(ε(k)−µ+λρ) − 1

.

Combining (23) and (24) we obtain the consistency equation:

η =
g2|η|

4(µ− λρ)V (E+ − E−)

{
1

eβE+ − 1
− 1
eβE− − 1

}

. (25)

So, the equilibrium states are determined by the limiting form of the consis-
tency equations (25) and (25).

Clearly if E− does not tend to zero as V → ∞ then the right-hand side
of (25) tends to zero and η = 0. For η �= 0 we must have E− → 0, that
is |η|2 → 4Ω(λρ + ε(q) − µ)/g2. In fact for a finite limit, the large-volume
asymptotic should to be

|η|2 ≈ 4Ω
g2

(

λρ+ ε(q) − µ− 1
βV τ

)

, (26)

where τ > 0. This implies that

E+ → Ω − µ+ λρ+ ε(q), E− ≈ Ω

βV τ(Ω − µ+ λρ+ ε(q))
(27)

and (25) becomes in the limit:

η

(

1 − g2τ

4(λρ− µ)Ω

)

= 0 . (28)

The last equation has solutions:

η = 0, or τ =
4(λρ− µ)Ω

g2
. (29)

For µ < 0, let

ε0(µ) =
1

(2π)3

∫

R3
d3k

ε(k) − µ

eβ(ε(k)−µ) − 1
, (30)

ρ0(µ) =
1

(2π)3

∫

R3
d3k

1
eβ(ε(k)−µ) − 1

(31)

and
p0(µ) = − 1

(2π)3

∫

R3
d3kln(1 − e−β(ε(k)−µ)) , (32)
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that is the grand-canonical energy density, the particle density and the pres-
sure for the free Bose-gas. Let

s0(µ) = β(ε0(µ) + p0(µ)) , (33)

and note that s0(µ) is an increasing function of µ. We shall denote the free
Bose-gas critical density by ρc := ρ0(0). Recall that ρc is infinite for ν < 3
and finite for ν ≥ 3.

Now we analyze in detail the solutions of (28) and compute their thermo-
dynamic functions. We consider three cases:
Case 1. Suppose that in the thermodynamic limit one has: η = 0 and
λρ − µ > 0. By virtue of (24) in this case we have ζ = 0 , i.e. there is
no condensation:

lim
V→∞

1
V
〈a∗0−a0−〉Heff

1,Λ(µ,η,ρ) = lim
V→∞

1
V
〈a∗q+aq+〉Heff

1,Λ(µ,η,ρ)

= lim
V→∞

1
V
〈b∗qbq〉Heff

1,Λ(µ,η,ρ) = 0 ,

and the photon and boson subsystems are decoupled. Now (25) takes the form

ρ = 2ρ0(µ− λρ) , (34)

the energy density is given by

lim
V→∞

1
V
〈H1,Λ(µ)〉Heff

1,Λ(µ,η,ρ) = 2ε0(µ− λρ) − 1
2
λρ2

and the entropy density is equal to

s(µ) = 2s0(µ− λρ) . (35)

Since the grand-canonical pressure is given by

p(µ) =
1
β
s(µ) − lim

V→∞

1
V
〈H1,Λ(µ)〉Heff

1,Λ(µ,η,ρ) , (36)

then
p(µ) = 2p0(µ− λρ) +

1
2
λρ2 . (37)

Case 2. Now suppose that in this case the thermodynamic limit gives: η = 0,
λρ− µ = 0. Then the solution of (25) has the asymptotic form:

ρV =
µ

λ
+

1
V λτ ′

+ o

(
1
V

)

, (38)

with some τ ′ ≥ 0. So, (25) yields the identity

ρ = τ ′ + 2ρc , (39)
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which implies that ρ ≥ 2ρc. Note that this case is possible only if ν ≥ 3. By
explicit calculations one gets:

lim
V→∞

1
V
〈a∗0−a0−〉Heff

1,Λ(µ,η,ρ) = τ ′ = ρ− 2ρc , (40)

i.e., there is a possibility of the mean-field condensation of zero-mode non-
excited bosons σ = −. Notice that the gauge invariance implies

lim
V→∞

〈a�0−〉Heff
1,Λ(µ,0,ρ)/

√
V = 0

Furthermore, we get also:

lim
V→∞

1
V
〈a∗q+aq+〉Heff

1,Λ(µ,0,ρ) = lim
V→∞

1
V
〈b∗qbq〉Heff

1,Λ(µ,0,ρ) = 0 , (41)

i.e., there is no condensation in the q �= 0 modes and the laser boson field.
Hence again the contribution from the interaction term vanishes, i.e. the
photon and boson subsystems are decoupled. In this case the energy density
is given by:

lim
V→∞

1
V
〈H1,Λ(µ)〉Heff

1,Λ(µ,η,ρ) = 2ε0(0) − µ2

2λ
(42)

and the entropy density has the form:

s(µ) = 2s0(0) = 2β(ε0(0) + p0(0)) . (43)

Thus for the pressure one gets:

p(µ) = 2p0(0) +
µ2

2λ
. (44)

Case 3. Suppose that η �= 0. Then by diagonalization of (13) we obtain a
simultaneous condensation of the excited/non-excited bosons and the laser
photons in the q-mode:

lim
V→∞

1
V
〈a∗0−a0−〉Heff

1,Λ(µ,η,ρ) = |η|2 =
4Ω(λρ+ ε(q) − µ)

g2
, (45)

lim
V→∞

1
V
〈a∗q+aq+〉Heff

1,Λ(µ,η,ρ) = τ =
4(λρ− µ)Ω

g2
, (46)

lim
V→∞

1
V
〈b∗qbq〉Heff

1,Λ(µ,η,ρ) =
4(λρ+ ε(q) − µ)(λρ− µ)

g2
. (47)

Equation (25) becomes:

ρ =
8Ω
g2

(λρ− µ+ ε(q)/2) + 2ρ0(µ− λρ) . (48)

Using the diagonalization of (13) one computes also
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lim
V→∞

1
V
〈a∗q+bq〉Heff

1,Λ(µ,η,ρ) =
4(λρ− µ)

√
Ω(λρ+ ε(q) − µ)
g2

. (49)

Then using (46) and (47), one obtains

lim
V→∞

∣
∣
∣
∣

1
V
〈a∗q+bq〉Heff

1,Λ(µ,η,ρ)

∣
∣
∣
∣

2

= lim
V→∞

1
V
〈a∗q+aq+〉Heff

1,Λ(µ,η,ρ) lim
V→∞

1
V
〈b∗qbq〉Heff

1,Λ(µ,η,ρ) . (50)

In this case the energy density is given by:

lim
V→∞

1
V
〈H1,Λ(µ)〉Heff

1,Λ(µ,η,ρ)=
4Ω(λρ+ ε(q) − µ)(λρ− µ)

g2
+2ε0(µ−λρ)−

1
2
λρ2 .

The entropy density is again given by

s(µ) = 2s0(µ− λρ) (51)

and the pressure becomes

p(µ) = 2p0(µ− λρ) +
1
2
λρ2 − 4Ω(λρ+ ε(q) − µ)(λρ− µ)

g2
. (52)

Before proceeding to a detailed study of the pressure, we would like to
comment an important conclusion which is implied by the fact that instead
of a standard inequality we obtain the equality in (50).

Proposition 1. The equality (50) implies that the limiting Gibbs state man-
ifests a spontaneous space translation invariance breaking in direction of the
vector q.

The proof follows from a direct application of arguments proving Theo-
rem III.3 in [21]. These arguments are developed to prove the spontaneous
breaking of the gauge invariance, but by inspection one finds that they cover
also the case of translation invariance. Instead of repeating them for our case,
we prefer to describe our situation in an explicit manner, cf [21]:

For simplicity we take q = (2π/γ)e1, where e1 = (1, 0, . . . , 0) ∈ R
ν and

γ > 0. Let ω(·) = limV→∞〈·〉Heff
1,Λ(µ,η,ρ) denote our equilibrium state deter-

mined by the parameter η, the chemical potential µ and the density ρ, where
in fact η and ρ are functions of µ through the self-consistency equations. Since
the initial Hamiltonian (2) is translation invariant, so is the state ω. Note that
(45), (46), (47) and (49) are expectation values in this state of translation
invariant operators a∗0−a0−, a∗q+aq+, b∗qbq and a∗q+bq. However the single op-
erators a�q+, and b�q are not translation invariant and their averages in the
state ω are modulated with period γ in the e1 direction.

Let ωγ denote an equilibrium state periodic in the e1 direction with period
γ. Then (50) expresses that for ωγ the analogue of the mixing property for ω
takes the following form:
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lim
V→∞

1
V
ω(a∗q+bq) = lim

V→∞

1
V
ωγ(a∗q+bq) (53)

= lim
V→∞

1√
V
ωγ(a∗q+) lim

V→∞

1√
V
ωγ(bq) ,

implying that both factors in the right-hand side are non-zero. Similarly, we
get, for example, that

lim
V→∞

1
V
ω(a0−bq) = lim

V→∞

1
V
ωγ(a0−bq) (54)

= lim
V→∞

1√
V
ωγ(a0−) lim

V→∞

1√
V
ωγ(bq) .

To get decoupling in (53) and (54) note that the quasi-local structure (9)
implies that

1√
V
bq =

1
V

∫

Λ

dx eiq·xb(x) (55)

is an operator space-average, which in the limit is a c-number in the periodic
state ωγ . Therefore the emergence of macroscopic occupation of the laser q-
mode (47) is accompanied by the creation of a one-dimensional optical lattice
in the e1 direction with period γ. We can then reconstruct the translation
invariant state ω and thus recover (50), by averaging ωγ :

ω =
1
γ

∫ γ

0

dξ ωγ ◦ τe1ξ , (56)

over elementary interval of the length γ.

2.2 The Pressure for Model 1

Having discussed the three Cases 1–3 we give the values of the chemical
potential µ when they occur. This analysis involves a detailed study of the
pressure.

Let κ = 8Ωλ/g2 − 1 and α = ε(q)(κ + 1)/2. From the condition for
thermodynamic stability we know that κ > 0. Let x0 be the unique value of
x ∈ [0,∞) such that 2λρ′0(−x) = κ and let µ0 = 2λρ0(−x0)+κx0. Note that
µ0 < 2λρc.

– The case when µ0 + α ≥ 2λρc is easy. In this situation Case 1 applies
for µ ≤ 2λρc and there exists µ1 > µ0 + α such that Case 2 applies for
2λρc < µ < µ1 and Case 3 for µ ≥ µ1.

– When µ0 + α < 2λρc the situation is more subtle. We show that there
exists µ1 > µ0 + α such that Case 3 applies for µ ≥ µ1. However we are
not able to decide on which side of 2λρc, the point µ1 lies. If µ1 > 2λρc
the situation is as in the previous subcase, while if µ0 +α < µ1 < 2λρc the
intermediate phase where Case 2 obtains is eliminated. This the situation
is similar to [7], where one has α = 0.



Bose-Einstein Condensation and Superradiance 271

– Note that for ν < 3, Case 1 applies when µ < µ1 and Case 3 when µ ≥ µ1.

Let x = λρ−µ and recall that κ = 8Ωλ/g2 − 1 and α = ε(q)(κ+ 1)/2. In
terms of x and η the above classification takes the form:
Case 4. η = 0 and x > 0. Then (34) becomes

2λρ0(−x) − x = µ . (57)

For µ ≤ 2λρc this has a unique solution in x, denoted by x1(µ), while for
µ > 2λρc it has no solutions. Let

p1(x, µ) := 2p0(−x) +
(x+ µ)2

2λ
. (58)

Then
p(µ) = p1(x1(µ), µ) . (59)

Case 5. η = 0 and x = 0. For µ > 2λρc

p(µ) = p2(µ) := 2p0(0) +
µ2

2λ
. (60)

Case 6. η �= 0. Then (48) becomes

2λρ0(−x) + κx+ α = µ . (61)

Recall that x0 is the unique value of x ∈ [0,∞) such that 2λρ′0(−x) = κ,
µ0 = 2λρ0(−x0) + κx0 and that µ0 < 2λρc.

Then for µ < µ0 + α, (61) has no solutions. For µ0 + α ≤ µ ≤ 2λρc + α
this equation has two solutions: x̃3(µ) and x3(µ), where x̃3(µ) < x3(µ) if
µ �= µ0 + α, and x̃3(µ0 + α) = x3(µ0 + α). Finally for µ > 2λρc + α it has a
unique solution x3(µ). Let

p3(x, µ) := 2p0(−x) +
{(x+ µ)2 − (κ+ 1)x2 − 2αx}

2λ
. (62)

Then

dp3(x̃3(µ), µ)
dµ

=
x̃3(µ) + µ

λ
<
x3(µ) + µ

λ
=
dp3(x3(µ), µ)

dµ
(63)

for µ �= µ0 + α. Since p3(x̃3(µ0 + α), µ0 + α) = p3(x3(µ0 + α), µ0 + α),

p3(x̃3(µ), µ) < p3(x3(µ), µ) (64)

for µ0 + α < µ ≤ 2λρc + α. Therefore

p(µ) = p3(x3(µ), µ) (65)

for all µ ≥ µ0 + α. Note that x̃3(2λρc + α) = 0 so that
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p3(x̃3(2λρc + α), 2λρc + α) = p1(x1(2λρc), 2λρc) = p2(2λρc) . (66)

Therefore

p3(x3(µ0 + α), µ0 + α) = p3(x̃3(µ0 + α), µ0 + α) < 2p0(0) + 2λρ2
c . (67)

Also for large µ, p3(x3(µ), µ) ≈ (µ2/2λ)((κ + 1)/κ) while p2(µ) ≈ (µ2/2λ),
so that p3(x3(µ), µ) > p2(µ) eventually. We remark finally that the slope of
p3(x3(µ), µ) is greater than that of p2(µ),

dp3(x3(µ), µ)
dµ

=
x3(µ) + µ

λ
>
µ

λ
=
dp2(µ)
dµ

, (68)

so that the corresponding curves intersect at most once.
The case α = 0, i.e. ε(q = 0) = 0, has been examined in [7]. For the case

α > 0 we have two subcases:
The subcase µ0 + α ≥ 2λρc is easy. In this situation Case 1 applies for

µ ≤ 2λρc. From (67) we see that

p3(x3(µ0 + α), µ0 + α) < 2p0(0) + 2λρ2
c < p2(µ0 + α) (69)

and therefore from the behaviour for large µ we can deduce that there exists
µ1 > µ0 + α such that Case 2 applies for 2λρc < µ < µ1 and Case 3 for
µ ≥ µ1.

The subcase µ0 + α < 2λρc is more complicated. We know that

p3(x̃3(2λρc), 2λρc) < p3(x̃3(2λρc+α), 2λρc+α) = p1(x1(2λρc), 2λρc) . (70)

Therefore since the slope of p3(x̃3(µ), µ) is greater than the slope of
p1(x1(µ), µ) for µ0 + α < µ < 2λρc:

dp3(x̃3(µ), µ)
dµ

=
x̃3(µ) + µ

λ
>
x1(µ) + µ

λ
=
dp1(x1(µ), µ)

dµ
, (71)

we can conclude that

p3(x3(µ0+α), µ0+α) = p3(x̃3(µ0+α), µ0+α) < p1(x1(µ0+α), µ0+α) . (72)

We also know by the arguments above that there exists µ1 > µ0+α such that
Case 3 applies for for µ ≥ µ1. However we do know on which side of 2λρc,
the point µ1 lies. If µ1 > 2λρc the situation is as in the previous subcase
while if µ0 + α < µ1 < 2λρc the intermediate phase where Case 2 obtains is
eliminated.

3 Model 2 and Matter-Wave Grating

The analysis for this model is very similar to that of Model 1. There-
fore, we only briefly summarize the main results. For Model 2 the effective
Hamiltonian is
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Heff
2,Λ(µ, η, ρ) = (λρ− µ+ ε(q))a∗qaq + (λρ− µ)a∗0a0 +

g

2
(ηa∗qbq + η̄aqb

∗
q)

+Ω b∗qbq +
g
√
V

2
(ζa0 + ζ̄a∗0) + T ′

2,Λ + (λρ− µ)N ′
2,Λ (73)

where
T ′

2,Λ =
∑

k∈Λ∗, k �=0 k �=q
ε(k)Nk , (74)

N ′
2,Λ =

∑

k∈Λ∗, k �=0 k �=q
ε(k)Nk . (75)

The parameters η, ζ and ρ satisfy the self-consistency equations:

η =
1√
V
〈a0〉Heff

2,Λ(µ,η,ρ), ζ =
1
V
〈a∗qbq〉Heff

2,Λ(µ,η,ρ), ρ =
1
V
〈N2,Λ〉Heff

2,Λ(µ,η,ρ) .

(76)
Solving these equations we again have three cases:
Case 7. ζ = η = 0 and λρ− µ > 0. In this case there is no condensation:

lim
V→∞

1
V
〈a∗0a0〉Heff

2,Λ(µ,η,ρ) = lim
V→∞

1
V
〈a∗qaq〉Heff

2,Λ(µ,η,ρ)

= lim
V→∞

1
V
〈b∗qbq〉Heff

2,Λ(µ,η,ρ) = 0 ,

the density equation is
ρ = ρ0(µ− λρ) (77)

and the pressure is

p(µ) = p0(µ− λρ) +
1
2
λρ2 .

Case 8. η = 0, λρ− µ = 0. Here ρ ≥ ρc and

lim
V→∞

1
V
〈a∗0a0〉Heff

2,Λ(µ,η,ρ) = ρ− ρc .

There is condensation in the k = 0 mode but there is no condensation in the
k = q mode and the photon laser field:

lim
V→∞

1
V
〈a∗qaq〉Heff

2,Λ(µ,η,ρ) = lim
V→∞

1
V
〈b∗qbq〉Heff

2,Λ(µ,η,ρ) = 0 . (78)

The pressure density is given by

p(µ) = p0(0) +
µ2

2λ
. (79)

Case 9. η �= 0. There is simultaneous condensation of the zero-mode and the
q-mode bosons as well as the laser q-mode photons:

lim
V→∞

1
V
〈a∗0a0〉Heff

2,Λ(µ,η,ρ) =
4Ω(λρ+ ε(q) − µ)

g2
, (80)
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lim
V→∞

1
V
〈a∗qaq〉Heff

2,Λ(µ,η,ρ) =
4(λρ− µ)Ω

g2
, (81)

lim
V→∞

1
V
〈b∗qbq〉Heff

2,Λ(µ,η,ρ) =
4(λρ+ ε(q) − µ)(λρ− µ)

g2
, (82)

lim
V→∞

1
V
〈a∗qbq〉Heff

2,Λ(µ,η,ρ) =
4(λρ− µ)

√
Ω(λρ+ ε(q) − µ)
g2

(83)

and

lim
V→∞

∣
∣
∣
∣

1
V
〈a∗qbq〉Heff

2,Λ(µ,η,ρ)

∣
∣
∣
∣

2

(84)

= lim
V→∞

1
V
〈a∗qaq〉Heff

2,Λ(µ,η,ρ) lim
V→∞

1
V
〈b∗qbq〉Heff

2,Λ(µ,η,ρ) .

The density is given by

ρ =
8Ω
g2

(λρ− µ+ ε(q)/2) + ρ0(µ− λρ)

and pressure is

p(µ) = p0(µ− λρ) +
1
2
λρ2 − 4Ω(λρ+ ε(q) − µ)(λρ− µ)

g2
.

Note that relations between the values of µ and the three cases above are
exactly the same as for Model 1 apart from the fact that 2ρ0 is now replaced
by ρ0 and 2ρc by ρc. For that one has to compare the kinetic energy operators
(1) and (4).

The recently observed phenomenon of periodic spacial variation in the
boson-density is responsible for the light and matter-wave amplification in
superradiant condensation, see [2–4, 13]. This so called matter-wave grating
is produced by the interference of two different macroscopically occupied
momentum states: the first corresponds to a macroscopic number of recoiled
bosons and the second to residual BE condensate at rest.

To study the possibility of such interference in Model 1 we recall that
for system (2), with two species of boson atoms the local particle density
operator has the form

ρ(x) :=
1
V

∑

k∈Λ∗, σ=±
ρk, σe

ikx , (85)

where the Fourier transforms of the local particle densities for two species
are

ρk, σ :=
∑

p∈Λ∗

a∗p+k, σap, σ . (86)

If the limiting equilibrium states generated by the Hamiltonian (2) is trans-
lation invariant, the momentum conservation law yields:
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lim
V→∞

ω(a∗p+k, σap, σ) = δk, 0 lim
V→∞

ω(a∗p, σap, σ) . (87)

So, in this state the equilibrium expectation of the local density

lim
V→∞

ω(ρ(x)) = (88)

lim
V→∞

1
V

∑

k∈Λ∗,σ

eikx
∑

p∈Λ∗

ω(a∗p+k,σap,σ) = lim
V→∞

ω(ρ(0))

is a constant. Since condensation may break the translation invariance in
one direction (see Proposition 1), we get a corresponding non-homogeneity
(grating) of the equilibrium total particle density in the extremal ωγ state.
This means that in the integral sum (88) over k, the ±q-mode terms survive
in the thermodynamic limit. By (53) and (54) we know that condensation
occurs only in the zero mode for the σ = − bosons and in the q-mode for the
σ = + bosons. and therefore we have the following relations:

lim
V→∞

1
V
ωγ(a∗q,+a0,+) = lim

V→∞

1√
V
ωγ(a∗q,+) lim

V→∞

1√
V
ωγ(a0,+) , (89)

lim
V→∞

1
V
ωγ(a∗q,−a0,−) = lim

V→∞

1√
V
ωγ(a∗q,−) lim

V→∞

1√
V
ωγ(a0,−) . (90)

To get decoupling in (89) and (90) one has to note that (as in (53), (54)) the
operators a0,±/

√
V , or a∗q,±/

√
V , are space-averages, which in the limit are

c-numbers in the periodic state ωγ . Since there is no condensation of σ = ±
bosons except in those two modes, the right-hand sides of both (89) and (90)
are equal to zero. Noting that

lim
V→∞

1
V
ωγ(a∗p+k,σap,σ) = 0 (91)

for any other mode, one gets the space homogeneity of the equilibrium particle
density in the extremal ωγ state: limV→∞ ωγ(ρ(x)) = const. So, for the Model
1 we have no particle density space variation even in the presence of the light
corrugated lattice of condensed photons, cf Proposition 1.

Let us now look at the corresponding situation in Model 2. The important
difference is that in this model the same boson atoms may condense in two
states (see Case 3):

lim
V→∞

1√
V
ωγ(a∗q) �= 0 and lim

V→∞

1√
V
ωγ(a0) �= 0 . (92)

Then (90) implies

lim
V→∞

1
V
ωγ(a∗qa0) = lim

V→∞

1√
V
ωγ(a∗q) lim

V→∞

1√
V
ωγ(a0) ≡ ξ �= 0 . (93)

Therefore, the bosons of these two condensates may interfere. By virtue of
(88) and (93) this gives the matter-wave grating formed by two macroscopi-
cally occupied momentum states:
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lim
V→∞

ωγ(ρ(x)) = lim
V→∞

1
V

∑

k∈Λ∗,σ

eikx
∑

p∈Λ∗

ωγ(a∗p+k,σap,σ) (94)

= (ξeiqx + ξe−iqx) + lim
V→∞

1
V

∑

k �=±q
eikxωγ(ρ◦k) ,

where
ρ◦k :=

∑

p�=0,q

a∗p+kap . (95)

Notice that by (93) and by (94) there is no matter-wave grating in the Case
2, when one of the condensates (for example the q-condensate) is empty, see
(41).

4 Conclusion

It is clear that the absence of the matter-wave grating in Model 1 and its pres-
ence in Model 2 provides a physical distinction between Raman and Rayleigh
superradiance. Note first that matter-wave amplification differs from light
amplification in one important aspect: a matter-wave amplifier has to pos-
sess a reservoir of atoms. In Models 1 and 2 this is the BE condensate. In
both models the superradiant scattering transfers atoms from the condensate
at rest to a recoil mode.

The gain mechanism for the Raman amplifier is superradiant Raman
scattering in a two-level atoms, transferring bosons from the condensate into
the recoil state [1]. The Rayleigh amplifier is in a sense even more effective.
Since now the atoms in a recoil state interfere with the BE condensate at rest,
the system exhibits a space matter-wave grating and the quantum-mechanical
amplitude of transfer into the recoil state is proportional to the product
N0(Nq + 1). Each time the momentum imparted by photon scattering is
absorbed by the matter-wave grating by the coherent transfer of an atom
from the condensate into the recoil mode. Thus, the variance of the grating
grows, since the quantum amplitude for scattered atom to be transferred
into a recoiled state is increasing [2–4, 13]. At the same time the dressing
laser beam prepares from the BE condensate a gain medium able to amplify
the light. The matter-wave grating diffracts the dressing beam into the path
of the probe light resulting in the amplification of the latter [5].

In the case of equilibrium BEC superradiance the amplification of the
light and the matter waves manifests itself in Models 1 and 2 as a mutual
enhancement of the BEC and the photons condensations, see Cases 3 in
Sects. 2 and 3. Note that the corresponding formulæ for condensation den-
sities for Model 1 (45)–(47) and for Model 2 (80), (81), (82) are identical.
The same is true for the boson-photon correlations (entanglements) between
recoiled bosons and photons, see (49), (83), as well as between photons and
the BE condensate at rest:
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lim
V→∞

1
V
〈a∗0−bq〉Heff

1,Λ(µ,η,ρ) =
1
V
〈a∗0bq〉Heff

2,Λ(µ,η,ρ) (96)

=
4Ω(λρ+ ε(q) − µ)

√
λρ− µ

g2
,

and for the off-diagonal coherence between recoiled atoms and the condensate
at rest:

lim
V→∞

1
V
〈a0−a

∗
q+〉Heff

1,Λ(µ,η,ρ) =
1
V
〈a0a

∗
q〉Heff

2,Λ(µ,η,ρ) (97)

=
4Ω
√

(λρ+ ε(q) − µ)(λρ− µ)
g2

.

As we have shown above, the difference between Models 1 and 2 becomes
visible only on the level of the wave-grating or spatial modulation of the local
particle density (94).
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Derivation of the Gross-Pitaevskii Hierarchy
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Abstract. We report on some recent results regarding the dynamical behavior of
a trapped Bose-Einstein condensate, in the limit of a large number of particles.
These results were obtained in [4], a joint work with L. Erdős and H.-T. Yau.

1 Introduction

In the last years, progress in the experimental techniques has made the study
of dilute Bose gas near the ground state a hot topic in physics. For the first
time, the existence of Bose-Einstein condensation for trapped gases at very
low temperatures has been verified experimentally. The experiments were
conducted observing the dynamics of Bose systems, trapped by strong mag-
netic field and cooled down at very low temperatures, when the confining
traps are switched off. It seems therefore important to have a good theoreti-
cal description of the dynamics of the condensate. Already in 1961 Gross [7,8]
and Pitaevskii [14] proposed to model the many body effects in a trapped
dilute Bose gas by a nonlinear on-site self interaction of a complex order para-
meter (the condensate wave function ut). They derived the Gross-Pitaevskii
equation

i∂tut = −∆ut + 8πa0|ut|2ut (1)

for the evolution of ut. Here a0 is the scattering length of the pair interaction.
A mathematically rigorous justification of this equation is still missing. The
aim of this article is to report on recent partial results towards the derivation
of (1) starting from the microscopic quantum dynamics in the limit of a large
number of particles. Here we only expose the main ideas: for more details,
and for all the proofs, we refer to [4].

Also in the mathematical analysis of dilute bosonic systems some im-
portant progress has recently been made. In [13], Lieb and Yngvason give a
rigorous proof of a formula for the leading order contribution to the ground
state energy of a dilute Bose gas (the correct upper bound for the energy was
already obtained by Dyson in [2], for the case of hard spheres). This impor-
tant result inspired a lot of subsequent works establishing different properties
of the ground state of the Bose system. In [12], the authors give a proof of
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(2006)
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the asymptotic exactness of the Gross-Pitaevskii energy functional for the
computation of the ground state energy of a trapped Bose gas. In [10], the
complete condensation of the ground state of a trapped Bose gas is proven.
For a review of recent results on dilute Bose systems we refer to [11]. All these
works investigate the properties of the ground state of the system. Here, on
the other hand, we are interested in the dynamical behavior.

Next, we want to describe our main result in some details. To this end,
we need to introduce some notation. From now on we consider a system
of N bosons trapped in a box Λ ⊂ R

3 with volume one and we impose
periodic boundary conditions. In order to describe the interaction among the
bosons, we choose a positive, smooth, spherical symmetric potential V (x)
with compact support and with scattering length a0.

Let us briefly recall the definition of the scattering length a0 of the po-
tential V (x). To define a0 we consider the radial symmetric solution f(x) of
the zero energy one-particle Schrödinger equation

(

−∆+
1
2
V (x)

)

f(x) = 0 , (2)

with the condition f(x) → 1 for |x| → ∞. Since the potential has compact
support, we can define the scattering length a0 associated to V (x) by the
equation f(x) = 1− a0/|x| for x outside the support of V (x) (this definition
can be generalized by a0 = limr→∞ r(1− f(r)), if V has unbounded support
but still decays sufficiently fast at infinity). Another equivalent characteriza-
tion of the scattering length is given by the formula

∫

dxV (x)f(x) = 8πa0 . (3)

Physically, a0 is a measure of the effective range of the potential V (x).
The Hamiltonian of the N -boson system is then given by

H = −
N∑

j=1

∆j +
∑

i<j

Va(xi − xj) (4)

with Va(x) = (a0/a)2V ((a0/a)x). By scaling, Va has scattering length a. In
the following we keep a0 fixed (of order one) and we vary a with N , so that
when N tends to infinity a approaches zero. In order for the Gross-Pitaevskii
theory to be relevant we have to take a of order N−1 (see [12] for a discussion
of other possible scalings). In the following we choose therefore a = a0/N , and
thus Va(x) = N2V (Nx). Note that, with this choice of a, the Hamiltonian
(4) can be viewed as a special case of the mean-field Hamiltonian

Hmf = −
N∑

j=1

∆j +
1
N

∑

i<j

β3V (β(xi − xj)) . (5)
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The Gross-Pitaevskii scaling is recovered when β = N . We study the dy-
namics generated by (5) for other choices of β (β = Nα, with α < 3/5)
in [3].

Since we have N particles in a box of volume one, the density is given
by ρ = N . Hence, the total number of particles interacting at a given time
with a fixed particle in the system is typically of order ρa3 � N−2 � 1 . This
means that our system is actually a very dilute gas, scaled so that the total
volume remains fixed to one.

The dynamics of the N -boson system is determined by the Schrödinger
equation

i∂tψN,t = HψN,t (6)

for the wave function ψN,t ∈ L2(R3N ,dx). Instead of describing the quan-
tum mechanical system through its wave-function we can describe it by the
corresponding density matrix γN,t = |ψN,t〉〈ψN,t| which is the orthogonal
projection onto ψN,t. We choose the normalization so that Tr γN,t = 1. The
Schrödinger equation (6) takes the form

i∂tγN,t = [H, γN,t] . (7)

For large N this equation becomes very difficult to solve, even numerically.
Therefore, it is desirable to have an easier description of the dynamics of the
system in the limit N → ∞, assuming we are only interested in its macro-
scopic behavior, resulting from averaging over the N particles. In order to in-
vestigate the macroscopic dynamics, we introduce the marginal distributions
associated to the density matrix γN,t. The k-particle marginal distribution
γ

(k)
N,t is defined by taking the partial trace over the last N −k variables. That

is, the kernel of γ(k)
N,t is given by

γ
(k)
N,t(xk;x

′
k) =

∫

dxN−k γN,t(xk,xN,k;x′
k,xN−k)

where γN,t(x;x′) denotes the kernel of the density matrix γN,t. Here and
in the following we use the notation x = (x1, . . . , xN ), xk = (x1, . . . , xk),
xN−k = (xk+1, . . . , xN ), and analogously for the primed variables. By defini-
tion, the k-particle marginal distributions satisfy the normalization condition

Tr γ(k)
N,t = 1 for all k = 1, . . . , N .

In contrast to the density matrix γN,t, one can expect that, for fixed k, the
marginal distribution γ

(k)
N,t has a well defined limit γ(k)

∞,t for N → ∞ (with
respect to some suitable weak topology), whose dynamics can be investigated.
In particular, the Gross-Pitaevskii equation (1) is expected to describe the
time evolution of the limit γ(1)

∞,t of the one-particle marginal distribution,

provided γ(1)
∞,t = |ut〉〈ut| is a pure state. Equation (1) can be generalized, for

γ
(1)
∞,t describing a mixed state, to
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i∂tγ
(1)
∞,t(x;x

′) = (−∆+∆′)γ(1)
∞,t(x;x

′)

+ 8πa0

(

γ
(1)
∞,t(x;x) − γ

(1)
∞,t(x

′;x′)
)

γ
(1)
∞,t(x;x

′) ,
(8)

which we again denote as the Gross-Pitaevskii equation.
To understand the origin of (8), we start from the dynamics of the mar-

ginals γ(k)
N,t, for finite N . From the Schrödinger equation (7), we can easily

derive a hierarchy of N equations, commonly called the BBGKY hierarchy,
describing the evolution of the distributions γ(k)

N,t, for k = 1, . . . , N :

i∂tγ
(k)
N,t(xk;x

′
k) =

k∑

j=1

(−∆xj
+∆x′j )γ

(k)
N,t(xk;x

′
k)

+
k∑

j �=�
(Va(xj − x�) − Va(x′j − x′�))γ

(k)
N,t(xk;x

′
k)

+ (N − k)
k∑

j=1

∫

dxk+1(Va(xj − xk+1) − Va(x′j − xk+1))

× γ
(k+1)
N,t (xk, xk+1;x′

k, xk+1) .

(9)

Here we use the convention that γ(k)
N,t = 0, for k > N . Hence, the one-particle

marginal density γ(1)
N,t satisfies

i∂tγ
(1)
N,t(x1;x′1) = (−∆x1 +∆x′1)γ

(1)
N,t(x1;x′1)

+ (N − 1)
∫

dx2 (Va(x1 − x2) − Va(x′1 − x2)) γ
(2)
N,t(x1, x2;x′1, x2) .

(10)

In order to get a closed equation for γ(1)
N,t we need to assume some relation

between γ
(1)
N,t and γ

(2)
N,t. The most natural assumption consists in taking the

two particle marginal to be the product of two identical copies of the one
particle marginal. Although this kind of factorization cannot be true for finite
N , it may hold in the limit N → ∞. We suppose therefore that γ(k)

∞,t, for

k = 1, 2, is a limit point of γ(k)
N,t, with respect to some weak topology, with

the factorization property

γ
(2)
∞,t(x1, x2;x′1, x

′
2) = γ

(1)
∞,t(x1;x′1)γ

(1)
∞,t(x2;x′2) .

Under this assumption we could naively guess that, in the limit N → ∞, (10)
takes the form

i∂tγ
(1)
∞,t(x1;x′1) = (−∆x1 +∆x′1)γ

(1)
∞,t(x1;x′1)

+ (Qt(x1) −Qt(x′1)) γ
(1)
∞,t(x1;x′1)

(11)
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with

Qt(x1) = lim
N→∞

N

∫

dx2 Va(x1 − x2)γ
(1)
∞,t(x2;x2)

= lim
N→∞

∫

dx2N
3V (N(x1 − x2))γ

(1)
∞,t(x2;x2)

= b0γ
(1)
∞,t(x1;x1)

where we defined b0 =
∫

dxV (x). Using the last equation, (11) can be rewrit-
ten as

i∂tγ
(1)
∞,t(x1;x′1) = (−∆x1 +∆x′1)γ

(1)
∞,t(x1;x′1)

+ b0

(

γ
(1)
∞,t(x1;x1) − γ

(1)
∞,t(x

′
1;x

′
1)
)

γ
(1)
∞,t(x1;x′1)

(12)

which is exactly the Gross-Pitaevskii equation (8), but with the wrong cou-
pling constant in front of the non-linear term (b0 instead of 8πa0). The fact
that we get the wrong coupling constant suggests that something was not
completely correct with the naif argument leading from (10) to (12). Recon-
sidering the argument, the origin of the error is quite clear: when passing to
the limit N → ∞ we first replaced γ(2)

N,t with γ(2)
∞,t and only after this replace-

ment we took the limit N → ∞ in the potential. This procedure gives the
wrong result because the marginal distribution γ(2)

N,t has a short scale struc-
ture living on the scale 1/N , which is the same length scale characterizing
the potential Va(x). The short scale structure of γ(2)

N,t (which describes the
correlations among the particles) disappears when the weak limit is taken,
so that γ(2)

∞,t lives on a length scale of order one. Therefore, in (12) we get
the wrong coupling constant because we erroneously disregarded the effect
of the correlations present in γ

(2)
N,t. It is hence clear that in order to derive

the Gross-Pitaevskii equation (8) with the correct coupling constant 8πa0,
we need to take into account the short scale structure of γ(2)

N,t. To this end we
begin by studying the ground state of the system.

A good approximation for the ground state wave function of the N boson
system is given by

W (x) =
N∏

i<j

f(N(xi − xj))

where f(x) is defined by (2) (then f(Nx) solves the same equation (2) with V
replaced by Va). Since we assumed the potential to be compactly supported
(let R denote the radius of its support), we have f(x) = 1−a0/|x|, for |x| > R,
and thus f(Nx) = 1−a0/N |x| = 1−a/|x|, for |x| > Ra. A similar ansatz for
the ground state wave function was already used by Dyson in [2] to prove his
upper bound on the ground state energy. In order to describe states of the
condensate, it seems appropriate to consider wave functions of the form
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ψN (x) = W (x)φN (x)

where φN (x) varies over distances of order one, and is approximately factor-
ized, that is φN (x) �

∏N
j=1 φ(xj). Assuming for the moment that this form

is preserved under the time-evolution we have

γ
(2)
N,t(x1, x2;x′1, x

′
2) � f(N(x1 − x2))f(N(x′1 − x′2))γ

(1)
N,t(x1;x′1)γ

(1)
N,t(x2;x′2) .

Thus, for finiteN , γ(2)
N,t is not exactly factorized and has a short scale structure

given by the function f(Nx). When we consider the limit N → ∞ of the
second term on the right hand side of (10) we obtain

lim
N→∞

N

∫

dx2 Va(x1 − x2)γ
(2)
N,t(x1, x2;x′1, x2)

= lim
N→∞

N3

∫

dx2 V (N(x1 − x2))f(N(x1 − x2))γ
(1)
∞,t(x1;x′1)γ

(1)
∞,t(x2;x2)

= 8πa0γ
(1)
∞,t(x1;x′1)γ

(1)
∞,t(x1;x1)

(13)

where we used (3) and the fact that γ(1)
N,t lives on a scale of order one (and

thus we can replace it by γ(1)
∞,t without worrying about the correlations). This

leads to the Gross-Pitaevskii equation for γ(1)
∞,t,

i∂tγ
(1)
∞,t(x1;x′1) =

(
−∆x1 +∆x′1

)
γ

(1)
∞,t(x1;x′1)

+ 8πa0

(

γ
(1)
∞,t(x1;x1) − γ

(1)
∞,t(x

′
1;x

′
1)
)

γ
(1)
∞,t(x1;x′1)

which has the correct coupling constant in front of the non-linear term.
Note that the factorization

γ
(2)
∞,t(x1, x2;x′1, x

′
2) = γ

(1)
∞,t(x1;x′1)γ

(1)
∞,t(x2;x′2)

still holds true, because the short scale structure of γ(2)
N,t vanishes when the

weak limit N → ∞ is taken. The short scale structure only shows up in the
Gross-Pitaevskii equation due to the singularity of the potential.

In order to make this heuristic argument for the derivation of the Gross-
Pitaevskii equation rigorous, we are faced with two major steps.

(i) In the first step we have to prove that the k-particle marginal density in
the limit N → ∞ really has the short scale structure we discussed above.
That is we have to prove that, for large N ,

γ
(k+1)
N,t (xk+1;x′

k+1) �





k+1∏

i<j

f(N(xi − xj))f(N(x′i − x′j))





× γ
(k+1)
∞,t (xk+1;x′

k+1) (14)



Derivation of the Gross-Pitaevskii Hierarchy 285

where γ(k+1)
∞,t is the limit of γ(k+1)

N,t with respect to some suitable weak
topology (in the heuristic argument above we considered the case k = 1,
here k is an arbitrary fixed integer k ≥ 1). Equation (14) would then imply
that, as N → ∞, the last term on the r.h.s. of the BBGKY hierarchy (9)
converges to

lim
N→∞

N

∫

dxk+1 Va(xj − xk+1)γ
(k+1)
N,t (xk+1;x′

k+1)

= 8πa0γ
(k+1)
∞,t (xk, xj ;x′

k, xj) .

Therefore, if we could also prove that the second term on the r.h.s. of
(9) vanishes in the limit N → ∞ (as expected, because formally of the
order N−1), then it would follow that the family γ(k)

∞,t satisfies the Gross-
Pitaevskii hierarchy

i∂tγ
(k)
∞,t(xk;x

′
k) =

k∑

j=1

(
−∆j +∆′

j

)
γ

(k)
∞,t(xk;x

′
k)

+ 8πa0

k∑

j=1

∫

dxk+1

(
δ(xk+1 − xj) − δ(xk+1 − x′j)

)

× γ
(k+1)
∞,t (xk, xk+1;x′

k, xk+1) (15)

for all k ≥ 1. We already know that this infinite hierarchy of equation
has a solution. In fact the factorized family of densities γ(k)

∞,t(xk;x
′
k) =

∏k
j=1 γ

(1)
∞,t(xj ;x

′
j) is a solution of (15) if and only if γ(1)

∞,t solves the Gross-
Pitaevskii equation (8).

(ii) Secondly, we need to prove that the densities γ(k)
∞,t factorize, that is, that,

for all k ≥ 1,

γ
(k)
∞,t(xk;x

′
k) =

k∏

j=1

γ
(1)
∞,t(xj ;x

′
j) . (16)

Then, from (15) and (16), it would follow that γ(1)
∞,t is a solution of the

Gross-Pitaevskii equation (8). Note that, since we already know that (15)
has a factorized solution, in order to prove (16) it is enough to prove the
uniqueness of the solution of the infinite hierarchy (15).

Unfortunately, due to the singularity of the δ-function, we are still unable to
prove that (15) has a unique solution and thus we cannot prove part (ii) (the
best result in this direction is the proof of the uniqueness for the hierarchy
with a Coulomb singularity, see [5]). On the other hand we can complete
part i) of our program, that is, we can prove that any limit point {γ(k)

∞,t}k≥1

of the family {γ(k)
N,t}Nk=1 (with respect to an appropriate weak topology), sat-

isfies the infinite hierarchy (15), provided we replace the original Hamiltonian
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H with a slightly modified version H̃, where we artificially modify the inter-
action when a large number of particles come into a region with diameter
much smaller than the typical inter-particle distance. Since H agrees with
H̃, apart in the very rare event (rare with respect to the expected typical
distribution of the particles) that many particles come very close together,
we don’t expect this modification to change the macroscopic dynamics of the
system: but unfortunately we cannot control this effect rigorously.

Note that the Gross-Pitaevskii equation (1) is a nonlinear Hartree equa-
tion

i∂tut = −∆ut + (V ∗ |ut|2)ut (17)

in the special case V (x) = 8πa0δ(x). In the literature there are several works
devoted to the derivation of (17) from the N -body Schrödinger equation. The
first results were obtained by Hepp in [9], for a smooth potential V (x), and
by Spohn in [15], for bounded V (x). Later, Ginibre and Velo extended these
results to singular potentials in [6]: their result is limited to coherent initial
states, for which the number of particles cannot be fixed. In [5], Erdős and
Yau derived (17) for the Coulomb potential V (x) = ±1/|x|. More recently,
Adami, Bardos, Golse and Teta obtained partial results for the potential
V (x) = δ(x), which leads to the Gross-Pitaevskii equation, in the case of
one-dimensional systems; see [1].

2 The Main Result

In this section we explain how we need to modify the Hamiltonian and then
we state our main theorem. In order to derive (15) it is very important to
find a good approximation for the wave function of the ground state of the N
boson system. We need an approximation which reproduces the correct short
scale structure and, at the same time, does not become too singular (so that
error terms can be controlled). Our first guess

W (x) =
∏

i<j

fa(xi − xj) =
∏

i<j

f(N(xi − xj)) (18)

is unfortunately not good enough. First of all we need to cutoff the correla-
tions at large distances (we want fa(x) = 1 for |x| � a). To this end we fix
a length scale �1 � a, and we consider the Neumann problem on the ball
{x : |x| ≤ �1} (we will choose �1 = N−2/3+κ for a small κ > 0). We are
interested in the solution of the ground state problem

(−∆+ 1/2Va(x))(1 − w(x)) = e�1(1 − w(x))

on {x : |x| ≤ �1}, with the normalization condition w(x) = 0 for |x| =
�1. Here e�1 is the lowest possible eigenvalue. It is easy to check that, up
to contributions of lower order, e�1 � 3a/�31. We can extend w(x) to be
identically zero, for |x| ≥ �1. Then
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(−∆+ 1/2Va(x))(1 − w(x)) = q(x)(1 − w(x)), with

q(x) � 3a
�31
χ(|x| ≤ �1) .

(19)

For a� |x| � �1, the function 1 − w(x) still looks very much like 1 − a/|x|,
but now it equals one, for |x| ≥ �1. Replacing fa(xi − xj) by 1 − w(xi − xj)
in (18) is still not sufficient for our purposes. The problem is that the wave
function

∏

i<j(1−w(xi−xj)) becomes very singular when a large number of
particles come very close together. We introduce another cutoff to avoid this
problem. We fix a new length scale �� �1 � a, such that �� N−1/3 (that is
� is still much smaller than the typical inter-particle distance: we will choose
� = N−2/5−κ for a small κ > 0). Then, for fixed indices i and j, and for an
arbitrary fixed number K ≥ 1, we cutoff the correlation between particles i
and j (that is we replace 1 − w(xi − xj) by one) whenever at least K other
particles come inside a ball of radius � around i and j. In order to keep our
exposition as clear as possible we choose K = 1, that is we cutoff correlations
if at least three particles come very close together. But there is nothing
special about K = 1: what we really need to avoid are correlations among a
macroscopic number of particles, all very close together. To implement our
cutoff we introduce, for fixed indices i, j, a function Fij(x) with the property
that

Fij(x) ∼= 1 if
{
|xi − xm| � �
|xj − xm| � �

for all m �= i, j

Fij(x) ∼= 0 otherwise.

Instead of using the wave function
∏

i<j(1−w(xi−xj)) we will approximate
the ground state of the N boson system by

W (x) =
∏

i<j

(1 − w(xi − xj)Fij(x)) , (20)

(the exact definition of W (x) is a little bit more complicated; see [4],
Sect. 2.3). The introduction of the cutoffs Fij in the wave function W (x)
forces us to modify the Hamiltonian H. To understand how H has to be
modified, we compute its action on W (x). We have, using (19),

W (x)−1(HW )(x) =
∑

i,j

q(xi − xj)

+
∑

i,j

((1/2)Va(xi − xj) − q(xi − xj)) (1 − Fij(x))

+ lower order contributions.

The “lower order contributions” are terms containing derivatives of Fij : they
need some control, but they are not very dangerous for our analysis. On the
other hand, the second term on the r.h.s. of the last equation, whose presence
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is due to the introduction of the cutoffs Fij , still contains the potential Va
and unfortunately we cannot control it with our techniques. Therefore, we
artificially remove it, defining a new Hamiltonian H̃, by

H̃ = H −
∑

i,j

((1/2)Va(xi − xj) − q(xi − xj)) (1 − Fij(x)) .

Note that the new Hamiltonian H̃ equals the physical Hamiltonian H unless
three or more particles come at distances less than �� N−1/3. This is a rare
event, and thus we don’t expect the modification of the Hamiltonian H to
change in a macroscopic relevant way the dynamics of the system.

Before stating our main theorem, we still have to specify the topology we
use in taking the limit N → ∞ of the marginal distributions γ(k)

N,t. It is easy

to check that, for every k ≥ 1, γ(k)
N,t(xk;x

′
k) ∈ L2(Λk × Λk). This motivates

the following definition. For Γ = {γ(k)}k≥1 ∈
⊕

k≥1 L
2(Λk × Λk), and for a

fixed ν > 1, we define the two norms

‖Γ‖− :=
∑

k≥0

ν−k‖γ(k)‖2 and ‖Γ‖+ := sup
k≥1

νk‖γ(k)‖2 (21)

where ‖.‖2 denotes the L2-norm on Λk × Λk. We have to introduce the pa-
rameter ν > 1 to make sure that, for ΓN,t = {γ(k)

N,t}Nk=1, the norm ‖ΓN,t‖− is
finite (choosing ν large enough, we find ‖ΓN,t‖− ≤ 1, uniformly in N and t).
We also define the Banach spaces

H− := {Γ = {γ(k)}k≥0 ∈
⊕

k≥1

L2(Λk × Λk) : ‖Γ‖− <∞}

and

H+ := {Γ = {γ(k)}k≥0 ∈
⊕

k≥1

L2(Λk × Λk) : lim
k→∞

νk‖γ(k)‖2 = 0} .

Then we have (H−, ‖.‖−) = (H+, ‖.‖+)∗. This induces a weak* topology
on H−, with respect to which the unit ball B− of H− is compact (Banach-
Alaouglu Theorem). Since the space H+ is separable, the weak* topology
on the unit ball B− is metrizable: we can find a metric ρ on H−, such that
a sequence Γn ∈ B− converges with respect to the weak* topology if and
only if it converges with respect to the metric ρ. For a fixed time T , we will
also consider the space C([0, T ],B−) of functions of t ∈ [0, T ], with values
in the unit ball B− ⊂ H−, which are continuous with respect to the metric
ρ (or equivalently with respect to the weak* topology of H−). We equip
C([0, T ],B−) with the metric

ρ̃(Γ1(t), Γ2(t)) = sup
t∈[0,T ]

ρ(Γ1(t), Γ̃2(t)) .
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In the following we will consider the families ΓN,t = {γ(k)
N,t}Nk=1 as elements

of C([0, T ],B−), and we will study their convergence and their limit points
with respect to the metric ρ̃. We are now ready to state our main theorem.

Theorem 1. Assume a = a0/N , �1 = N−2/3+κ, � = N−2/5−κ, for some
sufficiently small κ > 0. Assume

(ψN,0, H̃2ψN,0) ≤ CN2 ,

where (., .) denotes the inner product on L2(R3N ,dx). Let ψN,t, for t ∈ [0, T ],
be the solution of the Schrödinger equation

i∂tψN,t = H̃ψN,t (22)

with initial data ψN,0. Then, if α = (‖V ‖1 + ‖V ‖∞) is small enough (of
order one) and ν > 1 is large enough (recall that ν enters the definition of
the norms (21)), we have:

(i) ΓN,t = {γ(k)
N,t}Nk=1 has at least one (non-trivial) limit point Γ∞,t =

{γ(k)
∞,t}k≥1 ∈ C([0, T ],B−) with respect to the metric ρ̃.

(ii)For any limit point Γ∞,t = {γ(k)
∞,t}k≥1 and for all k ≥ 1, there exists a

constant C such that

Tr (1 −∆i)(1 −∆j)γ
(k)
∞,t ≤ C (23)

for all i �= j, t ∈ [0, T ].
(iii)Any limit point Γ∞,t satisfies the infinite Gross-Pitaevskii hierarchy (15)

when tested against a regular function J (k)(xk;x′
k):

〈J (k),γ
(k)
∞,t〉 = 〈J (k), γ

(k)
∞,0〉 − i

k∑

j=1

∫ t

0

ds〈J (k), (−∆j +∆′
j)γ

(k)
∞,s〉

− 8iπa0

k∑

j=1

∫ t

0

ds
∫

dxkdx′
k J

(k)(xk;x′
k)
∫

dxk+1

×
(
δ(xj − xk+1) − δ(x′j − xk+1)

)
γ(k+1)
∞,s (xk, xk+1;x′

k, xk+1) .

(24)

Here we use the notation 〈J (k), γ(k)〉 =
∫

dxkdx′
k J

(k)(xk;x′
k) γ

(k)(xk;x′
k).

Remarks.

(i) The main assumption of the theorem is the requirement that the expec-
tation of H̃2 at t = 0 is of order N2. One can prove that this condition is
satisfied for ψN,0(x) = W (x)φN (x) and φN sufficiently smooth (see [4],
Lemma D1). Physically, this assumption guarantees that the initial wave
function ψN,0(x) has the short-scale structure characteristic of W (x) and,
hence, that it describes, locally, a condensate.
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(ii) It is a priori not clear that the action of the delta-functions in the Gross-
Pitaevskii hierarchy (24) is well defined. This fact follows by the bound
(23), which makes sure that γ(k)

∞,t is sufficiently smooth.
(iii) We also need to assume that α = (‖V ‖∞ + ‖V ‖1) is small enough (but

still of order one). This technical assumption is needed in the proof of the
energy estimate, Proposition 1.

3 Sketch of the Proof

In this section we explain some of the main ideas used in the proof of The-
orem 1. Let ψN,t be the solution of the Schrödinger equation (22) (with the
modified Hamiltonian H̃). We can decompose ψN,t as

ψN,t(x) = W (x)φN,t(x) ,

where W (x) is the approximation for the ground state wave function de-
fined in (20). This decomposition is always possible because W (x) is strictly
positive.

The main tool in the proof of Theorem 1 is an estimate for the L2-norm of
the second derivatives of φN,t. This bound follows from the following energy
estimate.

Proposition 1. Assume a = a0/N , �1 = N−2/3+κ and � = N−2/5−κ for
κ > 0 small enough, and suppose α = (‖V ‖1 + ‖V ‖∞) is sufficiently small.
Then there exists a constant C > 0 such that
∫

dx |(H̃Wφ)(x)|2 ≥ (C − o(1))
N∑

i,j=1

∫

dxW 2(x)|∇i∇jφ(x)|2

− o(1)

(

N

N∑

i=1

∫

dxW 2(x)|∇iφ(x)|2 +N2

∫

dxW 2(x)|φ(x)|2
)

,

where o(1) → 0 as N → ∞.

Remark. The proof of this proposition is the main technical difficulty in our
analysis. It is in order to prove this proposition that we need to introduce the
cutoffs Fij in the approximate ground state wave function W (x), and that
we need to modify the Hamiltonian.

Using the assumption that, at t = 0, (ψN,0, H̃2ψN,0) ≤ CN2, the con-
servation of the energy, and the symmetry with respect to permutations, we
immediately get the following corollary.

Corollary 1. Suppose the assumptions of Proposition 1 are satisfied. Suppose
moreover that the initial data ψN,0 is symmetric with respect to permutations
and (ψN,0, H̃2ψN,0) ≤ CN2 . Then there exists a constant C such that
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∫

W 2(x)|∇i∇jφN,t(x)|2 ≤ C (25)

for all i �= j, t and all N large enough.

Remark. The bound (25) is not an estimate for the derivatives of the whole
wave function ψN,t. The inequality

∫

dx |∇i∇jψ(x)|2 < C (26)

is wrong, if ψ satisfies (ψ, H̃2ψ) ≤ CN2. In fact, in order for (ψ, H̃2ψ) to be
of order N2, the wave function ψ(x) needs to have the short scale structure
characterizing W (x). This makes (26) impossible to hold true uniformly in
N . Only after the singular part W (x) has been factorized out, we can prove
bounds like (25) for the derivatives of the remainder. One of the consequences
of our energy estimate, and one of the possible interpretation of our result,
is that the separation between the singular part of the wave function (living
on the scale 1/N) and its regular part is preserved by the time evolution.

Next we show how the important bound (25) can be used to prove The-
orem 1. According to the decomposition ψN,t(x) = W (x)φN,t(x), we define,
for k = 1, . . . , N , the densities U (k)

N,t(xk;x
′
k), for k = 1, . . . , N , to be, roughly,

the k-particle marginal density corresponding to the wave function φN,t (the
exact definition is a little bit more involved, see [4], Sect. 4). The estimate
(25) for the second derivatives of φN,t translates into a bound for the densities
U

(k)
N,t:

Tr (1 −∆i)(1 −∆j)U
(k)
N,t ≤ C (27)

for all i, j ≤ N with i �= j, for all t and for all N large enough.
Moreover, we can show that, for ν > 1 large enough (recall that the

parameter ν enters the definition of the norms (21)), the families UN,t =
{U (k)
N,t}Nk=1 define an equicontinuous sequence in the space C([0, T ],B−) (this

follows from a careful analysis of the BBGKY hierarchy associated to the
Schrödinger equation (22); see [4], Sects 9.1 and 9.2 for more details). Ap-
plying standard results (Arzela-Ascoli Theorem), it follows that the sequence
UN,t has at least one limit point, denoted U∞,t = {U (k)

∞,t}k≥1, in the space
C([0, T ],B−). The bound (27) can then be passed to the limit N → ∞, and
we obtain

Tr (1 −∆i)(1 −∆j)U
(k)
∞,t ≤ C

for all i �= j and t ∈ [0, T ].
Next we go back to the family ΓN,t = {γ(k)

N,t}Nk=1. Clearly, the densities

γ
(k)
N,t do not satisfy the estimate (27). In fact, γ(k)

N,t still contains the short
scale structure of W (x) (which, on the contrary, has been factorized out
from U

(k)
N,t), and thus cannot have the smoothness required by (27).
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It is nevertheless clear that the short scale structure of ΓN,t disappears
when we consider the limit N → ∞ (in the weak sense specified by Theo-
rem 1). In fact, one can prove the convergence of an appropriate subsequence
of ΓN,t to the limit point U∞,t of UN,t. In other words one can show that
limit points of ΓN,t, denoted by Γ∞,t, coincide with the limit points of UN,t.
Therefore, even though ΓN,t, for finite N , does not satisfies the bound (27),
its limit points Γ∞,t = {γ(k)

∞,t}k≥1 do. For every k ≥ 1 we have

Tr (1 −∆i)(1 −∆j)γ
(k)
∞,t ≤ C (28)

for all i �= j and t ∈ [0, T ]. This proves part i) and ii) of Theorem 1 (the
non-triviality of the limit follows by showing that Tr γ(1)

∞,t = 1). The bound
(28) can then be used to prove part iii) of Theorem 1, that is to prove that
the family Γ∞,t satisfies the infinite Gross-Pitaevskii hierarchy (24). In fact,
having control over the derivatives of γ(k)

∞,t allows us to prove the convergence
of the potential to a delta-function (that is, it allows us to make (13) rigorous).
To this end we use the following lemma (see [4], Sect. 8).

Lemma 1. Suppose δβ(x) = β−3h(x/β), for some regular function h, with
∫
h(x) = 1. Then, for any 1 ≤ j ≤ k, and for any regular function J(xk;x′

k),
we have

∣
∣
∣

∫

dxkdx′
kdxk+1 J(xk;x′

k)(δβ(xj − xk+1) − δ(xj − xk+1))

× γ(k+1)(xk, xk+1;x′
k, xk+1)

∣
∣
∣

≤ CJ
√

β Tr (1 −∆j)(1 −∆k+1)γ(k+1) .

Part (iii) of Theorem 1 can then be proven combining this lemma with the
estimates (27) and (28) (see [4], Sect. 9.4, for more details).
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3. A. Elgart, L. Erdős, B. Schlein, and H.-T. Yau: Gross-Pitaevskii equation as
the mean field limit of weakly coupled bosons. Preprint math-ph/0410038. To
appear in Arch. Rat. Mech. Anal.
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5. L. Erdős and H.-T. Yau: Derivation of the nonlinear Schrödinger equation from
a many body Coulomb system. Adv. Theor. Math. Phys. (6) 5 (2001), 1169–
1205.

6. J. Ginibre and G. Velo: The classical field limit of scattering theory for non-
relativistic many-boson systems. I and II. Commun. Math. Phys. 66 (1979),
37–76 and 68 (1979), 45–68.

7. E.P. Gross: Structure of a quantized vortex in boson systems. Nuovo Cimento
20 (1961), 454–466.

8. E.P. Gross: Hydrodynamics of a superfluid condensate. J. Math. Phys. 4
(1963), 195–207.

9. K. Hepp: The classical limit for quantum mechanical correlation functions.
Commun. Math. Phys. 35 (1974), 265–277.

10. E.H. Lieb and R. Seiringer: Proof of Bose-Einstein Condensation for Dilute
Trapped Gases. Phys. Rev. Lett. 88 (2002), 170409-1-4.

11. E.H. Lieb, R. Seiringer, J.P. Solovej, and J. Yngvason: The Quantum-
Mechanical Many-Body Problem: Bose Gas. Preprint math-ph/0405004.

12. E.H. Lieb, R. Seiringer, J. Yngvason: Bosons in a Trap: A Rigorous Derivation
of the Gross-Pitaevskii Energy Functional. Phys. Rev A 61 (2000), 043602.

13. E.H. Lieb and J. Yngvason: Ground State Energy of the low density Bose Gas.
Phys. Rev. Lett. 80 (1998), 2504–2507.

14. L.P. Pitaevskii: Vortex lines in an imperfect Bose gas. Sov. Phys. JETP 13
(1961), 451–454.

15. H. Spohn: Kinetic Equations from Hamiltonian Dynamics. Rev. Mod. Phys. 52
no. 3 (1980), 569–615.



Towards a Microscopic Derivation
of the Phonon Boltzmann Equation

Herbert Spohn

Zentrum Mathematik and Physik Department, TU München, 85747 Garching,
Boltzmannstr. 3, Germany
spohn@ma.tum.de

1 Introduction

The thermal conductivity of insulating (dielectric) crystals is computed al-
most exclusively on the basis of the phonon Boltzmann equation. We refer
to [1] for a discussion more complete than possible in this contribution. On
the microscopic level the starting point is the Born-Oppenheimer approxima-
tion (see [2] for a modern version), which provides an effective Hamiltonian
for the slow motion of the nuclei. Since their deviation from the equilibrium
position is small, one is led to a wave equation with a weak nonlinearity. As
already emphasized by R. Peierls in his seminal work [3], physically it is of
importance to retain the structure resulting from the atomic lattice, which
forces the discrete wave equation.

On the other hand, continuum wave equations with weak nonlinearity
appear in the description of the waves in the upper ocean and in many other
fields. This topic is referred to as weak turbulence. Again the theoretical
treatment of such equations is based mostly on the phonon Boltzmann eqa-
tion, see e.g. [4]. In these applications one considers scales which are much
larger than the atomistic scale, hence quantum effects are negligible. For di-
electric crystals, on the other side, quantum effects are of importance at low
temperatures. We refer to [1] and discuss here only the classical discrete wave
equation with a small nonlinearity.

If one considers crystals with a single nucleus per unit cell, then the dis-
placement field is a 3-vector field over the crystal lattice Γ . The nonlinearity
results from the weakly non-quadratic interaction potentials between the nu-
clei. As we will see, the microscopic mechanism responsible for the validity
of the Boltzmann equation can be understood already in case the displace-
ment field is declared to be scalar, the nonlinearity to be due to an on-site
potential, and the lattice Γ = Z

3. This is the model I will discuss in my notes.
As the title indicates there is no complete proof available for the validity

of the phonon Boltzmann equation. The plan is to explain the kinetic scaling
and to restate our conjecture in terms of the asymptotics of certain Feynman
diagrams.
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2 Microscopic Model

We consider the simple cubic crystal Z
3. The displacement field is denoted

by
qx ∈ R , x ∈ Z

3 , (1)

with the canonically conjugate momenta

px ∈ R , x ∈ Z
3 . (2)

We use units in which the mass of the nuclei is m = 1. The particles interact
harmonically and are subject to an on-site potential, which is divided into a
quadratic part and a non-quadratic correction. Thus the Hamiltonian of the
system reads

H=
1
2

∑

x∈Z3

(

p2
x+ω

2
0q

2
x

)

+
1
2

∑

x,y∈Z3

α(x−y)qxqy+
∑

x∈Z3

V (qx) = H0+
∑

x∈Z3

V (qx) .

(3)
The coupling constants have the properties

α(x) = α(−x) , (4)

|α(x)| ≤ α0e
−γ|x| (5)

for suitable α0, γ > 0, and
∑

x∈Z3

α(x) = 0 , (6)

because of the invariance of the interaction between the nuclei under the
translation qx � qx + a.

For the anharmonic on-site potential we set

V (u) =
√
ε
1
3
λu3 + ε(λ2/18ω2

0)u4 , u ∈ R . (7)

ε is the dimensionless scale parameter, eventually ε → 0. The quartic piece
is added so to make sure that H ≥ 0. In the limit ε→ 0 its contribution will
vanish and for simplicity of notation we will omit it from the outset. Then
the equations of motion are

d

dt
qx(t) = px(t) ,

d

dt
px(t) = −

∑

y∈Z3

α(y − x)qy(t) − ω2
0qx(t) −

√
ελqx(t)2 , x ∈ Z

3 . (8)

We will consider only finite energy solutions. In particular, it is assumed that
|px| → 0, |qx| → 0 sufficiently fast as |x| → ∞. In fact, later on there will
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be the need to impose random initial data, which again are assumed to be
supported on finite energy configurations. In the kinetic limit the average
energy will diverge as ε−3.

It is convenient to work in Fourier space. For f : Z
3 → R we define

f̂(k) =
∑

x∈Z3

e−i2πk·xfx , (9)

k ∈ T
3 = [− 1

2 ,
1
2 ]3, with inverse

fx =
∫

T3
dkei2πk·xf̂(k) , (10)

dk the 3-dimensional Lebesgue measure. The dispersion relation for the har-
monic part H0 is

ω(k) =
(
ω2

0 + α̂(k)
)1/2 ≥ ω0 > 0 , (11)

since α̂(k) > 0 for k �= 0 because of the mechanical stability of the harmonic
lattice with vanishing on-site potential.

In Fourier space the equations of motion read

∂

∂t
q̂(k, t) = p̂(k, t) ,

∂

∂t
p̂(k, t) = −ω(k)2q̂(k, t)

−
√
ελ

∫

T6
dk1dk2δ(k − k1 − k2)q̂(k1, t)q̂(k2, t) (12)

with k ∈ T
3. Here δ is the δ-function on the unit torus, to say, δ(k′) carries

a point mass whenever k′ ∈ Z
3.

It will be convenient to concatenate qx and px into a single complex-valued
field. We set

a(k) =
1√
2

(√
ωq̂(k) + i

1√
ω
p̂(k)

)

(13)

with the inverse

q̂(k) =
1√
2

1√
ω

(
a(k) + a(−k)∗

)
, p̂(k) =

1√
2
i
√
ω
(
− a(k) + a(−k)∗

)
. (14)

To have a concise notation, we introduce

a(k,+) = a(k)∗ , a(k,−) = a(k) . (15)

Then the a-field evolves as

∂

∂t
a(k, σ, t) = iσω(k)a(k, σ, t) + iσ

√
ελ

∑

σ1,σ2=±1

∫

T6
dk1dk2

(8ω(k)ω(k1)ω(k2))−1/2δ(−σk + σ1k1 + σ2k2)a(k1, σ1, t)a(k2, σ2, t) . (16)
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3 Kinetic Limit and Boltzmann Equation

The kinetic limit deals with a special class of initial probability mea-
sures. Their displacement field has a support of linear size ε−1 and average
energy of order ε−3. More specifically, these probability measures have the
property of being locally Gaussian and almost stationary under the dynam-
ics. Because of the assumed slow variation in space the covariance of such
probability measures changes only slowly, i.e. on the scale ε−1, in time.

Let us assume then that the initial data for (16) are random and specified
by a Gaussian probability measure on phase space. It is assumed to have
mean

〈a(k, σ)〉Gε = 0 , (17)

and for the covariance we set

〈a(k, σ)a(k′, σ)〉Gε = 0 , (18)

W ε(y, k) = ε3
∫

(T/ε)3
dηei2πy·η〈a(k − εη/2,+)a(k + εη/2,−)〉Gε , (19)

y ∈ (εZ)3, which defines the Wigner function rescaled to the lattice (εZ)3.
Local stationarity is ensured by the condition

lim
ε→0

W ε(,r-ε, k) = W 0(r, k) , (20)

where ,r-ε denotes integer part modulo ε. Note that W ε is normalized as

∑

y∈(εZ)3

∫

T3
dkW ε(y, k) =

∫

T3
dk〈a(k,+)a(k,−)〉Gε . (21)

The condition that the limit in (20) exists thus implies that the average
phonon number increases as ε−3, equivalently the average total energy in-
creases as

〈∫

T3
d3kω(k)a(k,+)a(k,−)

〉G

ε

= 〈H0〉Gε = O(ε−3) . (22)

Let 〈·〉t be the time-evolved measure at time t. Its rescaled Wigner func-
tion is

W ε(y, k, t) = ε3
∫

(T/ε)3
dηei2πy·η〈a(k − εη/2,+)a(k + εη/2,−)〉t/ε . (23)

Kinetic theory claims that

lim
ε→0

W ε(,r-ε, k, t) = W (r, k, t) , (24)

where W (r, k, t) is the solution of the phonon Boltzmann equation
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∂

∂t
W (r, k, t) +

1
2π

∇ω(k) · ∇rW (r, k, t)

=
π

2
λ2

∑

σ1,σ2=±1

∫

T6
dk1dk2(ω(k)ω(k1)ω(k2))−1δ(ω(k) + σ1ω(k1) + σ2ω(k2))

δ(k + σ1k1 + σ2k2)
(
W (r, k1, t)W (r, k2, t)

+σ1W (r, k, t)W (r, k2, t) + σ2W (r, k, t)W (r, k1, t)
)

(25)

to be solved with the initial condition W (r, k, 0) = W 0(r, k).
The free streaming part is an immediate consequence of the evolution of

W as generated by H0. The strength of the cubic nonlinearity was assumed to
be of order

√
ε, which results in an effect of order 1 on the kinetic time scale.

The specific form of the collision operator will be explained in the following
section. It can be brought into a more familiar form by performing the sum
over σ1, σ2. Then the collision operator has two terms. The first one describes
the merging of two phonons with wave number k and k1 into a phonon with
wave number k2 = k + k1, while the second term describes the splitting of a
phonon with wave number k into two phonons with wave numbers k1 and k2,
k = k1 +k2. In such a collision process energy is conserved and wave number
is conserved modulo an integer vector.

In (25) the summand with σ1 = 1 = σ2 vanishes trivially. However it
could be the case that the condition for energy conservation,

ω(k) + ω(k′) − ω(k + k′) = 0 , (26)

has also no solution. If so, the collision operator vanishes. In fact, for nearest
neighbor coupling only, α(0) = 6, α(e) = −1 for |e| = 1, α(x) = 0 otherwise,
it can be shown that (26) has no solution whenever ω0 > 0. To have a non-zero
collision term we have to require

∫

dk

∫

dk′δ(ω(k) + ω(k′) − ω(k + k′)) > 0 , (27)

which is an implicit condition on the couplings α(x). A general condition to
ensure (27) is not known. A simple example where (27) can be checked by
hand is

ω(k) = ω0 +
3∑

α=1

(1 − cos(2πkα)) , k = (k1, k2, k3) . (28)

It corresponds to suitable nearest and next nearest neighbor couplings.
There is a second more technical condition which requires that

sup
k

∫

dk′δ(ω(k) + ω(k′) − ω(k + k′)) = c0 <∞ . (29)

It holds for the dispersion relation (28). This uniform bound allows for a
simple proof that the Boltzmann equation has a unique solution for short
times provided W 0(r, k) is bounded.
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4 Feynman Diagrams

Denoting by 〈·〉t the average with respect to the measure at time t (in micro-
scopic units), the starting point of the time-dependent perturbation series is
the identity

〈
n∏

j=1

a(kj , σj)

〉

t

= exp



it





n∑

j=1

σjω(kj)









〈
n∏

j=1

a(kj , σj)

〉G

+i
√
ε

∫ t

0

ds exp



i(t− s)





n∑

j=1

σjω(kj)













n∑

�=1

∑

σ′,σ′′=±1

σ�

∫

T6
dk′dk′′φ(k�, k′, k′′)δ(−σ�k� + σ′k′ + σ′′k′′)

〈



n∏

j=1 j �=�
a(kj , σj)



 a(k′, σ′)a(k′′, σ′′)

〉

s



 . (30)

Here
φ(k, k′, k′′) = λ(8ω(k)ω(k′)ω(k′′))−1/2 (31)

One starts with n = 2 and σ1 = 1, σ2 = −1. Then on the right hand side of
(30) there is the product of three a’s. One resubstitutes (30) with n = 3, etc.
Thereby one generates an infinite series, in which only the average over the
initial Gaussian measure 〈·〉G appears.

To keep the presentation transparent, let me assume that 〈·〉G is a trans-
lation invariant Gaussian measure with

〈a(k,±)〉G = 0 , 〈a(k, σ)a(k′, σ)〉G = 0 ,

〈a(k,+)a(k′,−)〉G = δ(k − k′)W (k) . (32)

Then the measure at time t is again translation invariant. Kinetic scaling
now merely amounts to considering the long times t/ε. The Wigner function
at that time is then represented by the infinite series

〈a(q,−)a(p,+)〉t/ε = δ(q − p)

(

W (q) +
∞∑

n=1

W ε
n(q, t)

)

. (33)

The infinite sum is only formal. Taking naively the absolute value at iteration
2n one finds that

|W ε
n(q, t)| ≤ εn(t/ε)2n((2n)!)−1(2n)!c2n((2n+ 2)!/2n+1(n+ 1)!) . (34)

Here εn = (
√
ε)2n, (t/ε)2n/(2n)! comes from the time integration, (2n)! from

the sum over � in (30), c2n from the k-integrations and the initial W (k), and
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the factor (2n + 2)!/2n+1(n + 1)! from the Gaussian pairings in the initial
measure. Thus even at fixed ε there are too many terms in the sum.

Since no better estimate is available at present, we concentrate on the
structure of a single summand W ε

n(q, t). δ(q−p)W ε
n(q, t) is a sum of integrals.

The summation comes from

– the sum over σ′, σ′′ in (30)
– the sum over � in (30)
– the sum over all pairings resulting from the average with respect to the

initial Gaussian measure 〈·〉G.

Since each single integral has a rather complicated structure, it is convenient
to visualize them as Feynman diagrams.

A Feynman diagram is a graph with labels. Let us first explain the graph.
The graph consists of two binary trees. It is convenient to draw them on a
“backbone” consisting of 2n + 2 equidistant horizontal level lines which are
labelled from 0 (bottom) to 2n + 1 (top). The two roots of the tree are two
vertical bonds from line 2n + 1 to level line 2n. At level m there is exactly
one branch point with two branches in either tree. Thus there are exactly 2n
branch points. At level 0 there are then 2n+2 branches. They are connected
according to the pairing rule, see figure below.

In the Feynman graph each bond is oriented with arrows pointing either
up (σ = +1) or down (σ = −1). The left root is down while the right root is
up. If there is no branching the orientation is inherited from the upper level.
At a pairing the orientation must be maintained. Thus at level 0 a branch
with an up arrow can be paired only with a branch with a down arrow, see
(32). Every internal line in the graph must terminate at either end by a
branch point. Every such internal line admits precisely two orientations.

0
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4

5
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t1

t2
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1 2
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q p
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Next we insert the labels. The level lines 0 to 2n+1 are labelled by times
0 < t1 . . . < t2n < t. The left root carries the label q while the right root
carries the label p. Each internal line is labelled with a wave number k.

To each Feynman diagram one associates an integral through the following
steps.
(i) The time integration is over the simplex 0 ≤ t1 . . . ≤ t2n ≤ t as dt1 . . . dt2n.
(ii) The wave number integration is over all internal lines as

∫
dk1 . . .

∫
dkκ,

where κ = 3n− 1 is the number of internal lines.
(iii) One sums over all orientations of the internal lines.
The integrand is a product of three factors.
(iv) There is a product over all branch points. At each branchpoint there is a
root, say wave vector k1 and orientation σ1, and there are two branches, say
wave vectors k2, k3 and orientations σ2, σ3. Then each branch point carries
the weight

δ(−σ1k1 + σ2k2 + σ3k3)σ1φ(k1, k2, k3) . (35)
If one regards the wave vector k as a current with orientation σ, then (35)
expresses Kirchhoff’s rule for conservation of the current.
(v) By construction each bond carries a time difference tm+1 − tm, a wave
vector k, and an orientation σ. Then to this bond one associates the phase
factor

exp[i(tm+1 − tm)σω(k)/ε] . (36)
The second factor is the product of such phase factors over all bonds.
(vi) The third factor of the integrand is given by

n+1∏

j=1

W (kj) , (37)

where k1, . . . , kn+1 are the wave numbers of the bonds between level 0 and
level 1.
(vii) Finally there is the prefactor (−1)nε−n.

To illustrate these rules we give an example for n = 2, see figure
above. The associated integral is given by, more transparently keeping the
δ-functions from the pairings,

ε−2

∫

0≤t1≤...≤t4≤t
dt1 . . . dt4

∫

T24
dk1 . . . dk8

δ(q + k1 − k2)δ(k2 + k3 + k4)δ(−p− k5 − k6)δ(−k1 + k7 − k8)
φ(q, k1, k2)φ(k2, k3, k4)φ(p, k5, k6)φ(k1, k7, k8)
δ(k7 − k6)W (k7)δ(k8 − k3)W (k8)δ(k4 − k5)W (k4)
exp

[
{i(t− t4)(−ωq + ωp) + i(t4 − t3)(ω1 − ω2 + ωp)

+i(t3 − t2)(ω1 + ω3 + ω4 + ωp) + i(t2 − t1)(ω1 + ω3 + ω4 − ω5 − ω6)
+it1(ω7 − ω8 + ω3 + ω4 − ω5 − ω6)}/ε

]
(38)

with ωq = ω(q), ωp = ω(p), ωj = ω(kj).
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δ(q− p)W ε
n(q, t) is the sum over all Feynman diagrams with 2n+ 2 levels

and thus is a sum of oscillatory integrals. In the limit ε→ 0 only a few leading
terms survive while all remainders vanish. E.g., the Feynman diagram above
is subleading. In fact, the conjecture of kinetic theory can be stated rather
concisely:

Kinetic Conjecture: In a leading Feynman diagram the Kirchhoff rule
never forces an identification of the form δ(kj) with some wave vector kj. In
addition, the sum of the 2(n − m + 1) phases from the bonds between level
lines 2m and 2m+1 vanishes for every choice of internal wave numbers. This
cancellation must hold for m = 0, . . . , n.

Since we assumed the initial data to be spatially homogeneous, the phonon
Boltzmann equation (25) simplifies to

∂

∂t
W (k, t)

= 4πλ2
∑

σ1,σ2=±1

∫

T6
dk1dk2φ(k, k1, k2)2δ(ω(k) + σ1ω(k1) + σ2ω(k2))

δ(k + σ1k1 + σ2k2)
(
W (k1, t)W (k2, t) + 2σ2W (k, t)W (k1, t)

)
, (39)

where we used the symmetry with respect to (k1, σ1) and (k2, σ2). To (39)
we associate the Boltzmann hierarchy

∂

∂t
fn = Cn,n+1fn+1 , n = 1, 2, . . . , (40)

acting on the symmetric functions fn(k1, . . . , kn) with

Cn,n+1fn+1(k1, . . . , kn) = 4πλ2
n∑

�=1

∑

σ′,σ′′=±1

∫

T6
dk′dk′′φ(k�, k′, k′′)2

δ(ω(k�) + σ′ω(k′) + σ′′ω(k′′))δ(k� + σ′k′ + σ′′k′′)
[fn+1(k1, . . . , k

′, k�+1, . . . , k
′′) + 2σ′′fn+1(k1, . . . , kn, k

′)] . (41)

Under the condition (29) and provided ‖W‖∞ < ∞, the hierarchy (40) has
a unique solution for short times. In case

fn(k1, . . . , kn, 0) =
n∏

j=1

W (kj) , (42)

the factorization is maintained in time and each factor agrees with the so-
lution of the Boltzmann equation (39). From (40) one easily constructs the
perturbative solution to (39) with the result
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W (k, t) = W (k) +
∞∑

n=1

1
n!
tn(C1,2 . . . Cn,n+1W

⊗n+1)(k)

= W (k) +
∞∑

n=1

Wn(k, t) . (43)

The series in (43) converges for t sufficiently small.
For n = 1, 2 the oscillating integrals can be handled by direct inspec-

tion with the expected results limε→0W
ε
1 (k, t) = W1(k, t), limε→0W

ε
2 (k, t) =

W2(k, t). If the leading terms are as claimed in the Kinetic Conjecture, then
they agree with the series (43). The complete argument is a somewhat tricky
counting of diagrams, which would lead us too far astray. Thus the most
immediate project is to establish that all subleading diagrams vanish in the
limit ε → 0. This would be a step further when compared to the investiga-
tions [5], [6].

Of course a complete proof must deal with the uniform convergence of
the series in (33).
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Abstract. We review recent results of two of the authors concerning the quantiza-
tion of Hall currents, in particular a general quantization formula for the difference
of edge Hall conductances in semi-infinite samples with and without a confining
wall. We then study the case where the Fermi energy is located in a region of local-
ized states and discuss new regularizations. We also sketch the proof of localization
for 2D-models with constant magnetic field with random potential located in a half-
plane in two different situations: (1) with a zero potential in the other half plane
and for energies away from the Landau levels and (2) with a confining potential in
the other half plane and on an interval of energies that covers an arbitrary number
of Landau levels.

1 The Edge Conductance
and General Invariance Principles

Quickly after the discovery of the integer quantum Hall effect (IQHE) by
von Klitzing et. al. [33], then Halperin [28] put the accent on the crucial role
of quantum currents flowing at the edges of the (finite) sample. Such edge
currents, carried by edge states, should be quantized, and the quantization
should agree with the one of the transverse (Hall) conductance. While edge
currents have been widely studied in the physics literature since the early
eighties, e.g. [1, 11, 20, 35, 40] (see also [34, 37] and references therein), it is
only recently that a mathematical understanding of the existence of such edge
currents has been obtained [9,10,13,17–19,21]. The study of the quantization
of the edge Hall conductance at a mathematical level is even more recent
[3, 15,16,31,32,38].

We consider the simplest model for quantum devices exhibiting the IQHE.
This consists of an electron confined to the 2-dimensional plane considered as
the union of two complementary semi-infinite regions supporting potentials
V1 and V2, respectively, and under the influence of a constant magnetic field

J.-M. Combes et al.: On the Quantization of Hall Currents in Presence of Disorder, Lect.
Notes Phys. 690, 307–323 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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B orthogonal to the sample. In the absence of potentials V1 and V2, the free
electron is described by the free Landau Hamiltonian HL = p2

x+ (py −Bx)2.
The spectrum of HL consists of the well-known Landau levels BN = (2N −
1)B, N ≥ 1, with the convention B0 = −∞. To introduce the half-plane
potentials, we let 1− and 1+ be the characteristic functions of, respectively,
{x ≤ 0} and {x > 0}. Then, if V1, V2 are two potentials bounded from below
and in the Kato class [12], the Hamiltonian of the system is given, in suitable
units and Landau gauge, by

H(V1, V2) := HL + V11− + V21+ , (1)

as a self-adjoint operator acting on L2(R2,dxdy), where HL = H(0, 0) in this
notation. For technical reasons it is convenient to assume that V1, respectively
V2, does not grow faster than polynomially as x → −∞, respectively, as
x→ +∞.

We shall say that V1 is a left confining potential with respect to the interval
I = [a, b] ⊂ R if, in addition to the previous conditions, the following holds:
There exists R > 0, s.t.

∀x ≤ −R, ∀y ∈ R, V1(x, y) > b . (2)

The “hard wall” case, i.e. V1 = +∞ and H = HL + V2 acting on L2(R+ ×
R,dxdy) with Dirichlet boundary conditions, can be considered as well.

As typical examples for H(V1, V2) one may think of the right potential V2

as an impurity potential and the left potential V1 as either a wall, confining
the electron to the right half-plane and generating an edge current near x = 0,
or as the zero potential. In this latter case, the issue is to determine whether
or not V2 is strong enough to create edge currents by itself. We will discuss
this in Sect. 3.1. Another example is the strip geometry, where both V1 and
V2 are confining potentials outside of a strip x ∈ [−R,R], where the electron
is localized.

We define a “switch” function as a smooth real valued increasing function
equal to 1 (resp. 0) at the right (resp. left) of some bounded interval. Following
[3, 15,31,38], we define the (Hall) edge conductance as follows.

Definition 1. Let X ∈ C∞(R2) be a x-translation invariant switch function
with suppX ′ ⊂ R × [− 1

4 ,
1
4 ], and let −g ∈ C∞(R) be switch a function with

supp g′ ⊂ I = [a, b] a compact interval. The edge conductance of H(V1, V2)
in the interval I is defined as

σe(g, V1, V2) = −tr(g′(H(V1, V2))i[HL,X ]) (3)

whenever the trace is finite (we shall also use the notation σe(g,H) =
σe(g, V1, V2) if H = H(V1, V2)).

Note that in the situations of interest σe(g, V1, V2) will turn out to be
independent of the particular shape of the switch function X and also of the
switch function g, provided supp g′ does not contain any Landau level.
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We turn to the description of the results of [3].
Let us assume that I lies in between two successive Landau levels, say

the N th and the (N + 1)th. While clearly σe(g, 0, 0) = 0, for any g as above
since g′(HL) = 0, a straightforward computation shows that σe(g, V1, 0) = N ,
provided V1(x, y) = V1(x) is such that limx→−∞ V1(x) > b (see, for example,
[3, Proposition 1]). The first result tells us that the edge conductance is stable
under a perturbation by a potential W located in a strip [L1, L2]×R of finite
width.

Theorem 1. ( [3, Theorem 1]) Let H = H(V1, V2) be as in (1), and let W be
a bounded potential supported in a strip [L1, L2]×R, with −∞ < L1 < L2 <
+∞. Then the operator (g′(H +W ) − g′(H))i[HL,X ] is trace class, and

tr((g′(H +W ) − g′(H))i[HL,X ]) = 0 . (4)

As a consequence:
(i) σe(g,HL +W ) = 0.
(ii) Assume V1 is a y-invariant potential, i.e. V1(x, y) = V1(x), that is left
confining with respect to I ⊃ supp g′. If I ⊂]BN , BN+1[, for some N ≥ 0,
then

σe(g,HL + V1 +W ) = N . (5)

We note that Theorem 1 extends perturbations W that decay polyno-
mially fast in the x-direction. In particular, it allows for more general con-
fining potentials than y-invariant ones. But, it is easy to see that Theo-
rem 1 does not hold for all perturbations in the x direction. For example, if
supp g′ ⊂]BN , BN+1[, then σe(g, 0, 0) = 0, so for if W�(x, y) = ν01[0,�](x),
with ν0 > BN+1 and 0 < � < ∞, then σe(g, 0,W�) = 0. On the other hand,
a simple calculation shows (e.g. [3]) that for W∞ = ν01[0,∞[(x), we have
σe(g, 0,W∞) = −N . However, one has the following invariance principle,
which is a consequence of a more general sum rule given in [3, Theorem 2].

Theorem 2. ( [3, Corollary 3]) Let g be s.t. supp g′ ⊂]BN , BN+1[, for some
N ≥ 0. Let V1 be a y-invariant left confining potential with respect to suppg′.
Then the operator {g′(H(V1, V2)) − g′(H(0, V2))}i[HL,X ] is trace class and

− tr({g′(H(V1, V2)) − g′(H(0, V2))}i[HL,X ]) = N . (6)

In particular, if either σe(g, V1, V2) or σe(g, 0, V2) is finite, then both are finite,
and

σe(g, V1, V2) − σe(g, 0, V2) = N . (7)

An immediate, but important, consequence of Theorem 2, if ‖V2‖∞ < B,
then σe(g, V1, V2) = N , whenever I ⊂]BN + ‖V2‖∞, BN+1 − ‖V2‖∞[, recov-
ering a recent result of Kellendonk and Schulz-Baldes [32].

In general, neither term in (6) is separately trace class but a meaning can
be given to each term through an appropriate regularization. Various regu-
larizations of the edge conductance were discussed in [3], and two others are
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presented in Sect. 2. It is proved in [3] that the regularized edge conductance
σrege (g, V0, V ) satisfies a sum rule similar to (7):

σreg
e (g, V0, V ) = N + σreg

e (g, 0, V ) . (8)

With reference to this, note that σrege (g, 0, V ) �= 0 would imply the existence
of current carrying states solely due to the impurity potential. Since (8) would
yield σe(g, V1, V2) �= N , we see that such “edge currents without edges” are
responsible for the deviation of the Hall conductance from its ideal value N .
Typically this is expected to happen in a regime of strong disorder (with
respect to the magnetic strength B). As an example of this phenomenon, a
model studied by S. Nakamura and J. Bellissard [36] is revisited in [3] and
it is shown that in this case σe(g, V0, V2) = 0 and thus σe(g, 0, V2) = −N .
In Sect. 3.2, we present another example for which localization in the strong
disorder regime implies that σrege (0, V ) is quantized so that there are edge
currents without edges. As a counterpart, in the weak disorder regime (i.e.
weak impurities in the region x1 ≥ 0 and no electric potential in the left half-
plane), one expects that no current will flow near the region x1 = 0. After a
regularizing procedure, we argue in Sect. 3.1 that this is exactly what happens
with the model studied in [5,25,39] if I lies in a region of the spectrum where
localization has been shown.

Notation: Throughout this note 1X = 1(x,y) will denote the characteristic
function of a unit cube centered X = (x, y) ∈ Z

2. If A is a subset of R
2, then

1A will denote the characteristic function of this set. We recall that 1− and
1+ stand, respectively, for 1x≤0 and 1x>0.

2 Regularizing the Edge Conductance
in Presence of Impurities

2.1 Generalities

Let V2 = V be a potential located in the region x ≥ 0. If the operator
H(0, V ) has a spectral gap and if the interval I falls into this gap, then the
edge conductance is quantized as mentioned above. However such a situation
is not physically relevant, since the quantization of the Hall conductance can
only be related to the quantum Hall effect in presence of impurities that
create the well-known “plateaus” [2, 34]. If I falls into a region of localized
states of H(0, V ), then the conductances may not be well-defined, and a
regularization is needed. In this section, we briefly recall the regularization
procedure described in [3], and we then propose new candidates.

Assume supp g′ ⊂ I ⊂]BN , BN+1[. Let (JR)R>0 be a family of operators
s.t.

C1.‖JR‖ = 1 and limR→∞ JRψ = ψ, for all ψ ∈ EH(0,V )(I)L2(R2).
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C2.JR regularizes H(0, V ) in the sense that g′(H(0, V ))i[HL,X ]JR is trace
class for all R > 0, and limR→∞ tr(g′(H(0, V ))i[HL,X ]JR) exists and is
finite.

Then if V1 = V0 is a y-invariant left confining potential with respect to I, it
follows from Theorem 2 that

lim
R→∞

−tr ({g′(H(V0, V )) − g′(H(0, V ))}i[HL,X ]JR) = N .

In other terms, if C1 and C2 hold, then JR also regularizes H(V0, V ). Defin-
ing the regularized edge conductance by

σreg
e (g, V1, V2) := − lim

R→∞
tr(g′(H(V1, V2))i[HL,X ]JR) , (9)

whenever the limit exists, we get the analog of Theorem 2:

σreg
e (g, V0, V ) = N + σreg

e (g, 0, V ) . (10)

In particular, if we can show that σreg
e (g, 0, V ) = 0, for instance, under some

localization property, then the edge quantization for H(V0, V ) follows:

σreg
e (g, V0, V ) = − lim

R→∞
tr(g′(H(V0, V ))i[HL,X ]JR) = N . (11)

Let us now consider

Hω = H(0, Vω,+) = HL + Vω,+, Vω,+ =
∑

i∈Z+∗×Z

ωiu(x− i) , (12)

a random Schrödinger operator modeling impurities located on the positive
half-plane (the (ωi)i are i.i.d. (independent, identically distributed) random
variables, and u is a smooth bump function). If Hω has pure point spectrum
in I for P-a.e. ω, then denoting by (ϕω,n)n≥1 a basis of orthonormal eigen-
functions of Hω with energies Eω,n ∈ supp g′ ⊂ I, one has, whenever the
regularization holds,

σreg
e (g, 0, Vω,+) = − lim

R→∞

∑

n

g′(Eω,n)〈ϕω,n, i[Hω,X ]JRϕω,n〉 . (13)

If JR = 1x≤R, the limit (13) actually exists [3, Propostion 2], but it is very
likely that it will not be zero, even under strong localization properties of the
eigenfunctions such as (SULE) (see [14]) or (SUDEC) (see Definition 2 below
and [26]). We refer to [16] for a concrete example. This can be understood
as follows: Because the cut-off JR (even a smooth version of it) cuts classical
orbits living near x = R, it will create spurious contributions to the total
current, and the latter will no longer be zero. The quantum counter part of
this picture is that although the expectation of i[Hω,X ] in an eigenstate of
Hω is zero by the Virial Theorem, this is no longer true if this commuta-
tor is multiplied by JR. Of course, the sum in (13) is zero if JR commutes
with Hω, as in [3, Theorem 3]. In the next two sections we investigate new
regularizations that commute with Hω only asymptotically (as R→ ∞).
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2.2 A Time Averaged Regularization
for a Dynamically Localized System

We assume that the operator H = H(0, V ) exhibits dynamical localization
in an open interval I ∈]BN , BN+1[. This means that for any p ≥ 0, there
exists a nonnegative constant Cp <∞ such that for any Borel function f on
I, with |f | ≤ 1, and for any X1,X2 ∈ R

2,

sup
t∈R

‖1X1f(H)e−itH1X2‖2 ≤ Cpmin(1, |X1 −X2|)−p) . (14)

We used the Hilbert-Schmidt norm. For random Schrödinger operators Hω,
this assumption is one of the standard conclusions of multiscale analysis [23,
24]. We show in Sect. 3.1 that as long as I ∈]BN , BN+1[ such an analysis
applies to the Hamiltonian Hω = H(0, Vω) as in (12).

Note that it follows from (14) that if X ∈ R
2 and A is a subset of R

2 (A
may contain X) then, for any p > 0, there exists a (new) constant 0 ≤ Cp <
∞, such that

sup
t∈R

‖1Af(H)e−itH1X‖2 ≤ Cpmin(1,dist({X}, A)−p) . (15)

For R <∞, η > 0 and γ > 0, we set, with H = H(0, V ) and X = (x, y),

JR = η

∫ ∞

0

EH(I)eitH1x≤Re−itHEH(I)e−ηtdt, with R = η−γ . (16)

Theorem 3. Let JR as in (16), with γ ∈]0, 1[. Assume that H(0, V ) ex-
hibits dynamical localization (i.e. (14)) in I ⊂]BN , BN+1[ for some N ≥ 0.
Then JR regularizes H(0, V ), and thus also H(V0, V ), in the sense that C1
and C2 hold. Moreover the edge conductances take the quantized values:
σreg
e (g, 0, V ) = 0 and σreg

e (g, V0, V ) = N .

Remark 1. In [16], a similar regularization is considered, where γ = 1 andH is
the bulk Hamiltonian H(V, V ). We also note that if R and η are independent
variables, then one recovers the regularization [3, (7.13)], see [3, Remark 13].

Proof. Since ‖JR‖ ≤ 1, to get C1 it is enough to check limR→∞ JREH
(I)ψEH(I)ψ for compactly supported states, and it is thus enough to note
that by (15),

‖(1 − JR)EH(I)10‖ ≤ η

∫ ∞

0

sup
t

‖1x>Re−itHEH(I)10‖e−ηtdt ≤ CpR
−p . (17)

We turn to C2. As in [3], we write i[H,X ] = i[H,X ]1|y|≤ 1
2
, with 1|y|≤ 1

2
=

∑

x2∈Z
1(x2,0). Note that, by hypothesis on I, g′(H) = g′(H) − g′(HL), so

that terms that are far in the left half plane will give small contributions. To
see this, we develop
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∥
∥(g′(H) − g′(HL))i[HL,X ]EH(I)e−itH1x≤−R

∥
∥

1
(18)

using the Helffer-Sjöstrand formula [29, 30] and the resolvent identity with
RL(z) = (HL − z)−1 and R(z) = (H − z)−1. It is thus enough to control
terms of the form, with Imz �= 0, x1, y1, x2 ∈ Z, X1 = (x1, y1),
∥
∥
∥R(z)V 1x≥0RL(z)i[HL,X ]1|y|≤ 1

2
EH(I)e−itH1x≤−R

∥
∥
∥

1
≤

∑

x1≥0,y1,x2

(19)

× ‖R(z)V 1X1‖2‖1X1RL(z)i[HL,X ]1(x2,0)‖‖1(x2,0)EH(I)e−itH1x≤−R‖2

But, as a well-known fact,R(z)1X1 is Hilbert-Schmidt in dimension 2, e.g. [25,
Lemma A.4], and its Hilbert-Schmidt norm is bounded by C[dist(z, σ(H))]−1

≤ C�z−1, uniformly in X1. Then, for some κ ≥ 1,

(19) ≤ C

(�z)κ
∑

x1≥0,y1,x2≤−R
2

‖1X1RL(z)i[HL,X ]1(x2,0)‖ (20)

+
C

(�z)κ
∑

x2≥−R
2

‖1(x2,0)EH(I)e−itH1x≤−R‖2 (21)

≤ C

(�z)κR
−p , (22)

where the latter follows from (15) and from the fact that ‖1X1RL(z)
i[HL,X ]1(x2,0)‖ decays faster than any polynomial in |X1 − X2|, as can be
seen by a Combes-Thomas estimate together with standard computations
(e.g. [3, Lemma 3]). As a consequence the trace norm (18) is finite and goes
to zero as R→ ∞, uniformly in η.

The next step is to control contributions coming from terms living far
from the support of X ′, i.e. terms s.t. |y| ≥ Rν with ν ∈]0, 1]. Set S(R, ν) =
{(x, y) ∈ R

2, |x| ≤ R, |y| ≥ Rν}. Then, using (15),
∥
∥g′(H)i[HL,X ]EH(I)e−itH1S(R,ν)

∥
∥

1
(23)

≤
∑

x2∈Z

∥
∥g′(H)i[HL,X ]1(x2,0)

∥
∥

2

∥
∥1(x2,0)EH(I)e−itH1S(R,ν)

∥
∥

2
(24)

≤ C
∑

x2∈Z

min(1,dist({(x2, 0)}, S(R, ν))−p) ≤ C(2R)(Rν)−p . (25)

Contributions from (23) are thus negligible as R→ ∞, uniformly in η. Letting
KR,ν denote the compact set

KR,ν = {(x, y) ∈ R
2, |x| ≤ R, |y| ≤ Rν} ,

we are left so far with the evaluation of

η

∫ ∞

0

e−ηtdt g′(H)i[HL,X ]EH(I)eitH1KR,ν
e−itHEH(I) , (26)
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which is clearly now a trace class operator (the integral is absolutely conver-
gent in trace norm). In other terms g′(H)i[HL,X ]JR is thus trace class. It
remains to show that its trace goes to zero as R goes to infinity. But on the
account of (18) and (23), it remains to show that the trace of (26) goes to
zero. By cyclicity,

tr(26) = −η
∫ ∞

0

e−ηttr
{
g′(H)X e−itH i[HL, EH(I)1KR,ν

EH(I)]eitH
}

dt

= η

∫ ∞

0

e−ηt
d

dt
tr
{
g′(H)X e−itHEH(I)1KR,ν

EH(I)eitH
}

dt

= ηtr
{
g′(H)XEH(I)1KR,ν

EH(I)
}

−η2

∫ ∞

0

e−ηttr
{
g′(H)X e−itHEH(I)1KR,ν

EH(I)eitHEH(I)
}

dt.

Thus |tr(26)| ≤ Cη|KR,ν | = CηR1+ν . Since R = η−γ , the trace goes to zero
if γ < 1

1+ν .

2.3 Regularization Under a Stronger
form of Dynamical Localization

In this section, we consider

JR = EH(0,V )(I)1x≤REH(0,V )(I) . (27)

Note that the regularization (16) studied in Sect. (2.2) is the time average
of (27). The effect of the time averaging is to provide a control on the cross
terms arising in (27) if one expands EH(0,V )(I) over a basis of eigenfunctions.
In [3, (7.13)], cross terms were suppressed from the very definition of JR. By
showing that JR, given in (27), regularizesH(0, Vω) under, basically, the same
assumption as in [3, Theorem 3], we strengthen [3]’s result.

Let T be the multiplication operator by T (X) = 〈X〉ν , ν > d
2 = 1, with

〈X〉 = (1 + |X|2) 1
2 , for X ∈ R

2. It is well known for Schrödinger operators
that tr(T−1EH(0,V )(I)T−1) <∞, if I is compact (e.g. [25]).

Definition 2 (SUDEC). Assume H has pure point spectrum in I with
eigenvalues En and corresponding normalized eigenfunctions ϕn, listed with
multiplicities. We say that H has Summable Uniform Decay of Eigenfunc-
tion Correlations (SUDEC) in I, if there exist ζ ∈]0, 1[ and a finite constant
c0 > 0 such that for any En ∈ I and X1,X2 ∈ Z

2,

‖1X1ϕn‖‖1X2ϕn‖ ≤ c0αn‖T1X1‖2‖T1X2‖2e−|X1−X2|ζ , (28)

where αn = ‖T−1ϕn‖2.

Note that,
∑

n

αn = tr(T−1EH(0,V )(I)T−1) <∞ . (29)
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Remark 2. Property (28) (or a modified version of it) was called (WULE)
in [3] and was introduced in [22]. The more accurate acronym (SUDEC) comes
from [26] and Property (SUDEC) is used in [27] as a very natural signature
of localization in order to get the quantization of the bulk conductance.

Theorem 4. Assume that H(0, V ) has (SUDEC) in I ⊂]BN , BN+1[ for some
N ≥ 0. Then JR, given in (27), regularizes H(0, V ), and thus also H(V0, V ),
in the sense that C1 and C2 hold. Moreover the edge conductances take the
quantized values: σreg

e (g, 0, V ) = 0 and σreg
e (g, V0, V ) = N .

Proof. That the operator g′(H(0, V ))i[H(0, V ),X ]JR is trace class follows
from the comparison g′(H(0, V )) = g′(H(0, V ))− g′(HL). In order to control
the region x ≤ 0, and the immediate estimate, let Pn be the eigenprojector
on the eigenfunction ϕn, and write

‖1XEH(0,V )(I)1Y ‖2 ≤
∑

n

‖1XPn1Y ‖2 =
∑

n

‖1Xϕn‖‖1Y ϕn‖ (30)

≤ c0

(
∑

n

αn

)

‖T1X‖2‖T1Y ‖2e−|X−Y |ζ , (31)

where we used the assumption (28) (and recall (29)). We proceed and set
Λ2,R = 1x≤R. We are looking at

σ
(reg)
E (g,R) = tr(g′(H(0, V ))i[H(0, V ),X ]JR) . (32)

The operator being trace class, we expand the trace in the basis of eigenfunc-
tions of H(0, V ) in the interval I and get

|σ(reg)
E (g,R)| =

∣
∣
∣
∣
∣
∣

∑

n�=m
g′(En)(En − Em)〈ϕn,Xϕm〉〈ϕm, Λ2,Rϕn〉

∣
∣
∣
∣
∣
∣

(33)

≤ C(g, I)
∑

n�=m
|〈ϕn,Xϕm〉||〈ϕm, Λ2,Rϕn〉| . (34)

It remains to show that the double sum in (34) is convergent (i.e. the trace
is absolutely convergent). If it is so, then we can interchange the limit in R
and the double sum to get zero due to the orthogonality of the eigenfunctions.
In full generality, dynamical localization is not enough to show that (34) is
absolutely convergent. This is the case if H = H(0, 0) = HL and I contains
a Landau level. The sum (34) diverges, even though HL exhibits dynamical
localization. But if one has (SULE) or (SUDEC), then the sum converges
absolutely. We have, writing Λ2 instead of Λ2,R:
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(34) (35)

≤
∑

n�=m
|〈ϕn,Xϕm〉| |〈ϕm, Λ2ϕn〉| (36)

=
∑

n�=m
|〈ϕn,Xϕm〉|

1
2 |〈ϕn, (1 −X )ϕm〉|

1
2 |〈ϕm, Λ2ϕn〉|

1
2 |〈ϕm, (1 − Λ2)ϕn〉|

1
2

≤
∑

n�=m

(

‖
√
Xϕn‖‖

√
Xϕm‖‖

√
1 −Xϕn‖‖

√
1 −Xϕm‖ (37)

× ‖
√

Λ2ϕn‖‖
√

Λ2ϕm‖‖
√

1 − Λ2ϕn‖‖
√

1 − Λ2ϕm‖
) 1

2
(38)

≤
∑

n

(

‖
√
Xϕn‖‖

√
1 −Xϕn‖‖

√

Λ2ϕn‖‖
√

1 − Λ2ϕn‖
) 1

2
(39)

×
∑

m

(

‖
√
Xϕm‖‖

√
1 −Xϕm‖‖

√

Λ2ϕm‖‖
√

1 − Λ2ϕm‖
) 1

2
(40)

It remains to show that (28) implies

∑

n

(

‖
√
Xϕn‖‖

√
1 −Xϕn‖‖

√

Λ2ϕn‖‖
√

1 − Λ2ϕn‖
) 1

2
<∞ . (41)

We consider division of R
2 into four quadrants given by the supports of

the various localization functions: I = supp XΛ2, II = supp (1 − X )Λ2,
III = supp (1 − X )(1 − Λ2), and IV = supp X (1 − Λ2). We first note that
summing (28) over two opposite quadrants (I)(III) yields a constant:

‖
√
X
√

Λ2ϕn‖‖
√

1 −X
√

1 − Λ2ϕn‖ ≤ cαn , (42)

and summing over the opposite quadrants (II)(IV) yields,

‖
√
X
√

1 − Λ2ϕn‖‖
√

1 −X
√

Λ2ϕn‖ ≤ cαn (43)

We write a term in (41) as

‖
√
Xϕn‖‖

√
1 −Xϕn‖‖

√

Λ2ϕn‖‖
√

1 − Λ2ϕn‖ (44)

≤ (‖
√
X
√

Λ2ϕn‖ + ‖
√
X
√

1 − Λ2ϕn‖)
(‖
√

1 −X
√

Λ2ϕn‖ + ‖
√

1 −X
√

1 − Λ2ϕn‖)
(‖
√
X
√

Λ2ϕn‖ + ‖
√

1 −X
√

Λ2ϕn‖)
(‖
√
X
√

1 − Λ2ϕn‖ + ‖
√

1 −X
√

1 − Λ2ϕn‖)
= (I + IV)(II + III)(I + II)(III + IV) . (45)

This decomposition yields 16 terms, each of them having at least one product
of the form (42) or (43), i.e. with opposite terms: (I)(III) and (II)(IV).
If we now bound the other factors by one, we get

∑

n

√
αn in (41), while
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our assumption only ensures that
∑

n αn < ∞. To get the missing factor√
αn we have to be a bit more careful. First, obviously, terms of the form

(I)2(III)2, (II)2(IV)2 and (I)(II)(III)(IV) will directly yield the desired
αn. It remains to study terms of the form (I)2(II)(III), (I)2(II)(IV), and
(I)2(II)(IV), and the 9 remaining terms beginning with (II)2, (III)2, and
(IV)2. Let us treat the first case, the other two terms being similar. Note
that (I)2 =

∑

x1≤R,y1≤0 ‖1X1ϕn‖2, with X1 = (x1, y1). Then going back to
(28), with obvious notations, we have

(I)2(II)(III) ≤
∑

X1,X2,X3

‖1X1ϕn‖2‖1X2ϕn‖‖1X3ϕn‖ (46)

≤
∑

X1,X2,X3

(‖1X1ϕn‖‖1X2ϕn‖)(‖1X1ϕn‖‖1X3ϕn‖)

≤ (c0αn)2
∑

X1,X2,X3

〈X1〉4ν〈X2〉2ν〈X3〉2ν

× e−
1
4 (|y1|ζ−|y2|ζ−|x1−x2|ζ)e−

1
4 (|x1|ζ−|x3|ζ−|y1|ζ−|y3|ζ)

≤ C(R)α2
n . (47)

3 Localization for the Landau Operator
with a Half-Plane Random Potential

We describe some results concerning the localization properties of the Hamil-
tonians H(V1, V2) of interest to the IQHE. First, we sketch the proof of
localization for H(0, V2), with V2 random, in the large B regime, a result
mentioned in Sect. 2.2 and announced in [3, Remark 12]. We then sketch
the proof of localization for H(V1, V2), where V1 is a left confining potential,
and V2 is a random Anderson-type potential in the large disorder regime and
with a covering condition on the single-site potentials. In the large disorder
regime, this provides an example of edge currents without edges. Other re-
sults for such special models of interest to edge conductance and the IQHE
are discussed in [4].

3.1 A Large Magnetic Field Regime

The aim of this section is to justify Remark 12 in [3] where localization for
H(0, V ) away from the Landau levels is claimed. We let X = (x, y) ∈ R

2,
and consider, for λ > 0, B > 0 given, the Hamiltonian

Hω = H(0, Vω), with Vω = λ
∑

i∈Z+×Z

ωiu(X − i) . (48)

The assumptions on the random variables ωi, i ∈ Z
+ × Z, and on the single

site potential u are the one considered in [5, 25]. Namely, the ωi’s are i.i.d.
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random variables with a common law µ(dt) = g(t)dt, where g is an even
bounded function with support in [−M,M ], M > 0, with, in addition, the
condition µ([0, t]) ≥ cmin(t,M)ζ , for some ζ > 04. In order to apply the
percolation estimate as in [5] we require that

supp u ∈ B(0, 1/
√

2) . (49)

With no loss we assume that ‖u‖∞ = 1, so that the spectrum of Hω satisfies

σ(Hω) ⊂
⋃

n≥1

[Bn −M,Bn +M ] .

We note that thanks to the ergodicity of Hω with respect to integer trans-
lations in the y-direction, the spectrum equals a deterministic set for almost
all ω = (ωi)i∈Z+×Z. For convenience we shall extend the ωi’s to the left half
plane by setting ωi = 0 if i ∈ Z

− × Z.
The only difference between the present model and that of [5, 25] is that

the random potential in the left half-plane is replaced by a zero potential. This
absence of a potential creates a classically forbidden region in the spectral
sense for energies between Landau levels. This situation is different from a
classically forbidden region created by a wall. The intuition is that looking
at a given distance of a Landau level (in the energy axis), the absence of
potential should help for localization. One may think of [5, 25,39]’s result as
a weak disorder result. The disorder is kept fixed and localization is obtained
for large B. In this spirit putting ωi = 0 should be even better, for one creates
fewer states at a given distance from the Landau level. One might think that
the interface at x = 0 between the random potential in the right half-plane
and the absence of potential in the left one would create some current along
the interface. It could be so for energies very close to the Landau level where
the above reasoning breaks down.

To get localization, one has to investigate how the Wegner estimate, the
multiscale analysis (MSA), and the starting estimates of the MSA are affected
by the new geometry of the random potential. In particular, since we broke
translation invariance in the x direction, we have to check things for all boxes,
regardless of the position with respect to the interface x = 0.

The Wegner estimate: It is immediately seen that the proof of the Wegner
estimate given in [5] is still valid with this geometry. Indeed, if a box ΛL(x, y)
is such that x < L/2, then ΛL(x, y) overlaps the left half-plane (it may even
be contained in it). Then, in [5, (3.8)] the sum is restricted to sites i = (i1, i2)
where ωi �= 0 (i.e. i1 > 0). The rest of the proof is unchanged, and as a result
the volume factor one gets at the end is |ΛL(x, y) ∩ (R+ × R)| rather than
|ΛL(x, y)|. In particular one gets zero if ΛL(x, y) ⊂ R

− × R, as expected. So
(W) and (NE) of [24] hold.

4This last hypothesis is not necessary to prove localization at a given fixed
distance, independent of B, from the Landau levels
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The multiscale analysis: The deterministic part of the MSA (properties
(SLI) and (EDI) in [24]) is not sensitive to changes of the random variables.
Independence of far separated boxes (property (IAD) in [24]) is still true. In
fact, what happens in the probabilistic estimates that appear in the MSA is
that we shall estimate probabilities of bad events related to boxes which have
an overlap with the left half-plane as if they where contained in the right half-
plane, and thus by a bigger (thus worse) probability. In particular, if a box
is totally included in the left half-plane, the probability of having a singular
box is zero, and we shall estimate it by a polynomially (or sub-exponentially)
small factor in the size of the box.

The starting estimate: We follow the argument given in [5]. Let us focus
on energies E ∈]Bn, Bn+M ], the other case E ∈ [Bn−M,Bn[ being similar.
We thus set E = Bn + 2a, a > 0. We say that a site i ∈ Z

2 is occupied if
ωi ∈ [−M,a], in other words, dist(E,Bn + ωi) ≥ a (recall ‖u‖∞=1). Note
that by hypothesis on ωi, for any a > 0,

P(ωi ∈ [−M,a]) ≥ 1
2

+ caζ .

In particular, the probability is P(ωi ∈ [−M,a]) = 1, if i ∈ Z
− × Z. We

are thus above the critical bond percolation threshold pc = 1
2 (in dimension

2) for all i ∈ Z
2. Consequently, bonds percolate, and [5, Proposition 4.1]

follows. The rest of the proof leading to the initial length scale estimate [5,
Proposition 5.1] is the same.

At this stage Theorem 4.1 in [25] applies, and one has Anderson localiza-
tion, (SULE), and strong Hilbert-Schmidt dynamical localization as described
in [24], as well as (SUDEC) (following the proof of [22]; see also [26]).

We note that the above arguments are not restricted to the particular
half-plane geometry of the random potential we discussed here. Any random
potential of the form Vω =

∑

i∈J ωiu(X − i), where J ⊂ Z
2 has an infinite

cardinal would yield the same localization result.

3.2 A Large Disorder Regime

We next consider the random Landau Hamiltonian defined in (48) with a left
constant confining potential V0(x, y) = V01− (see (2)) so that H(V0, Vω) =
HL+V01−+λVω1+, for large values of the disorder parameter λ. The random
potential in the right half-plane Vω, as in (48), has i.i.d. random variables ω′

is
with a common positively supported distribution, say on [0, 1]. We also impose
the condition that the single site potential u ∈ C∞

c (R) satisfies the following
covering condition: If Λ ⊂ R

+ × R,
∑

i∈Λ
u(X − i) ≥ C01Λ . (50)

We show that if the disorder is large enough, then at low energy, no edge
current will exist along the interface x = 0 in the sense that the regularized
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edge conductance σrege (g, V0, λVω) of H(V0, Vω) will be zero. As consequence
of (10), however, the regularized edge conductance of H(0, Vω) will be quan-
tized to a non zero value, i.e. σrege (g, 0, λVω) = −N . In other terms the ran-
dom potential λVω is strong enough to create “edge currents without edges”
(as in [17]). Such a situation is similar to the model studied by S. Nakamura
and J. Bellissard [36], and revisited in [3] from the “edge” point of view.

The strategy to prove localization for H(V0, Vω) is the same as the one
exposed in Sect. 3.1, i.e. use a modified multiscale analysis taking into account
the new geometry of the problem. Here the potential in the left half-plane is no
longer zero but a constant V0 > b, if I = [0, b] is the interval where we would
like to prove localization. As in Sect. 3.1, the modifications of the Wegner
estimate, of the starting estimates of the the multiscale analysis (MSA), and
of the MSA itself, have to be checked separately. While the comments made
in Sect. 3.1 concerning the MSA are still valid, the new geometry requires
new specific arguments for the Wegner estimate and the starting estimate.

The Wegner estimate: Its proof can no longer be borrowed from [5] as in
Sect. 3.1, and one has to explicitly take into account the effect of the confining
potential V01−. We shall modify the argument given in [8] as follows. The
only case we have to discuss is the one of a box ΛL(X), with |x| < L

2 so that
it overlaps both types of potentials. We set

ṼL =
∑

i∈ΛL(X)∩Z2

ωiu(X − i) .

LetHL denote the restriction ofH(V0, Vω) to the box ΛL(X) with self-adjoint
boundary conditions (e.g. [27]). By Chebychev’s inequality, the proof of the
Wegner estimate is reduced to an upper bound on the expectation of the
trace of the spectral projector EHL

(I) for the interval I. Following [7], we
write

trEHL
(I) = tr1ΛL(X)EHL

(I) (51)

≤ 1
V0

trV01ΛL(X)1−EHL
(I) +

λ

C0
trṼLEHL

(I) (52)

≤ 1
V0

tr1−HLEHL
(I) +

λ

C0
trṼLEHL

(I) (53)

≤ b

V0
trEHL

(I) +
λ

C0
trṼLEHL

(I) , (54)

so that, with V0 > b by assumption,

trEHL
(I) ≤ λ

C0

(

1 − b

V0

)−1

trṼLEHL
(I) . (55)

At this point, the proof follows the usual strategy, as in [6–8].
The starting estimate: The initial estimate follows from the analysis, at

large disorder, given in [25, Section 3]. Since in the left half-plane, the po-
tential is already very high (V0 > b), it is enough to estimate the probability
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that all the random variables ωi in the right part of the box is higher than
say b/2. Doing this creates a gap in the spectrum of the finite volume op-
erator HL. This spectral gap, occurring with good probability, can be used
to obtain the exponential decay of the (finite volume) resolvent thanks to a
Combes-Thomas argument.
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35. Mac Donald, A.H., Streda, P.: Quantized Hall effect and edge currents. Phys.

Rev. B 29, 1616–1619 (1984)
36. Nakamura, S., Bellissard, J.: Low Energy Bands do not Contribute to Quantum

Hall Effect. Commun. Math. Phys. 131, 283–305 (1990)
37. Prange, Girvin, The Quantum Hall Effect, Graduate texts in contemporary

Physics, Springer-Verlag, N.Y. 1987
38. Schulz-Baldes, H., Kellendonk, J., Richter, T.: Simultaneous quantization of

edge and bulk Hall conductivity. J. Phys. A 33, L27–L32 (2000)



On the Quantization of Hall Currents in Presence of Disorder 323

39. Wang, W.-M.: Microlocalization, percolation, and Anderson localization for the
magnetic Schrödinger operator with a random potential. J. Funct. Anal. 146,
1–26 (1997)

40. Zozoulenko, I.V., Maao, F.A., Hauge, E.H., Phys. Rev. B53, 7975 (1996).



Equality of the Bulk and Edge Hall
Conductances in 2D
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1 Introduction and Main Result

Von Klitzing [15] observed that a two dimensional electron gas at very low
temperatures and strong magnetic field displays a quantization of the Hall
conductance, that is the conductance measured in the direction transversal
to the applied current. Specifically, the conductance plotted as a function
of the magnetic field shows extremely flat plateaux at integer multiples of
e2/h (e is a charge of electron and h is Planck’s constant). Two pictures were
introduced for a description of the Quantum Hall Effect: “Edge currents
picture” and “Bulk currents picture”. The edge current picture suggests that
the Hall current flows in the narrow regions along the sample boundaries (we
will denote the corresponding conductance by σE), so that the Hall voltage
drops entirely in these regions. On the other hand, the description in terms of
bulk currents suggests that the Hall voltage drops gradually across the sample
(and let σB denote the Hall conductance associated with this regime). It was
proposed by Halperin [13] that in reality one should expect an intermix of
these two pictures, and that σE = σB. In [14], σE,B were linked for a Harper’s
model with rational flux. In more general setup, the equality of the edge and
the bulk conductances was recently rigorously established [10,16,18], provided
that there is a spectral gap ∆ at Fermi energy of the single-particle (bulk)
Hamiltonian HB .

The aim of this article is to report on a recent joint result with G. M. Graf
and J. H. Schenker [11], and to expose some of the ideas involved. There we
proved this equality in the more general setting in which HB exhibits An-
derson localization in ∆ – more precisely, strong dynamical localization (see
(2) below). The result applies to Schrödinger operators which are random,
but does not depend on that property. We therefore formulate the result for
deterministic operators. A full account of this work with detailed proofs of
all the results stated below is provided in [11].

The bulk system is described by the lattice Z
2 � x = (x1, x2) with

Hamiltonian HB = H∗
B on �2(Z2). We assume its matrix elements HB(x, x′),

x, x′ ∈ Z
2, to be of short range, namely

sup
x∈Z2

∑

x′∈Z2

|HB(x, x′)| (eµ|x−x′| − 1) =: C1 < ∞ (1)

A. Elgart: Equality of the Bulk and Edge Hall Conductances in 2D, Lect. Notes Phys. 690,
325–332 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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for some µ > 0, where |x| = |x1|+ |x2|. Our hypothesis on the bounded open
interval ∆ ⊂ R is that for some ν ≥ 0

sup
g∈B1(∆)

∑

x,x′∈Z2

|g(HB)(x, x′)| (1 + |x|)−νeµ|x−x′| =: C2 < ∞ (2)

where B1(∆) denotes the set of Borel measurable functions g which are con-
stant in {λ|λ < ∆} and in {λ|λ > ∆} with |g(x)| ≤ 1 for every x.

In particular C2 is a bound when g is of the form gt(λ) = e−itλE∆(λ) and
the supremum is over t ∈ R, which is a statement of dynamical localization.
By the RAGE theorem this implies that the spectrum of HB is pure point in
∆. We denote the corresponding eigen-projections by E{λ}(HB) for λ ∈ E∆,
the set of eigenvalues λ ∈ ∆. We assume that no eigenvalue in E∆ is infinitely
degenerate,

dimE{λ}(HB) < ∞ , λ ∈ E∆ . (3)

The validity of these assumptions is discussed below.
The zero temperature bulk Hall conductance at Fermi energy λ is defined

by the Kubo-Středa formula [5]

σB(λ) = −i trPλ [ [Pλ, Λ1] , [Pλ, Λ2] ] , (4)

where Pλ = E(−∞,λ)(HB) and Λi(x) is the characteristic function of
{
x = (x1, x2) ∈ Z

2 | xi < 0
}
.

Under the above assumptions σB(λ) is well-defined for λ ∈ ∆, and shows
a plateau (see [11] for further details). We remark that (3) is essential for
a plateau: for the Landau Hamiltonian (though defined on the continuum
rather than on the lattice) (1, 2) hold if properly interpreted, but (3) fails in
an interval containing a Landau level, where indeed σB(λ) jumps.

The edge system is described as a half-plane Z × Za, where Za =
{n ∈ Z | n ≥ −a}, with the height −a of the edge eventually tending to −∞.
The Hamiltonian Ha = H∗

a on �2(Z × Za) is obtained by restriction of HB
under some largely arbitrary boundary condition. More precisely, we assume
that

Ea = JaHa −HBJa : �2(Z × Za) → �2(Z2) (5)

satisfies

sup
x∈Z2

∑

x′∈Z×Za

|Ea(x, x′)| eµ(|x2+a|+|x1−x′1|) ≤ C3 < ∞ , (6)

where Ja : �2(Z × Za) → �2(Z2) denotes extension by 0. For instance with
Dirichlet boundary conditions, Ha = J ∗

aHBJa, we have

Ea = (JaJ ∗
a − 1)HBJa ,
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i.e.,

Ea(x, x′) =

{

−HB(x, x′) , x2 < −a ,
0 , x2 ≥ −a ,

whence (6) follows from (1). We remark that (1) is inherited by Ha with a
constant C1 that is uniform in a, but not so for (2) as a rule.

The definition of the edge Hall conductance requires some preparation.
The current operator across the line x1 = 0 is −i [Ha, Λ1]. Matters are simpler
if we temporarily assume that ∆ is a gap for HB , i.e., if σ(HB) ∩∆ = ∅, in
which case one may set [18]

σE := −i tr ρ′(Ha) [Ha, Λ1] , (7)

where ρ ∈ C∞(R) satisfies

ρ(λ) =

{

1 , λ < ∆ ,

0 , λ > ∆ .
(8)

The operator in (7) is trace class essentially because i [H,Λ1] is relevant
only on the states near x1 = 0, and ρ′(Ha) only near the edge x2 = −a,
so that the intersection of the two strips is compact (see Sect. 2 for more
details). In the situation (2) considered in this paper the operator appearing
in (7) is not trace class, since the bulk operator may have spectrum in ∆,
which can cause the above stated property to fail for ρ′(Ha). In search of a
proper definition of σE , we consider only the current flowing across the line
x1 = 0 within a finite window −a ≤ x2 < 0 next to the edge. This amounts
to modifying the current operator to be

− i
2

(Λ2 [Ha, Λ1] + [Ha, Λ1]Λ2) = − i
2
{ [Ha, Λ1] , Λ2} , (9)

with which one may be tempted to use

lim
a→∞

− i
2

tr ρ′(Ha) { [Ha, Λ1] , Λ2} (10)

as a definition for σE . Though we show that this limit exists, it is not the
physically correct choice. In particular, the edge conductance should be non-
zero on average for the Harper Hamiltonian with an i.i.d. random potential
[11].

The basic fact that the net current of a bound eigenstate ψλ of HB is
zero,

− i (ψλ, [HB , Λ1]ψλ) = 0 , (11)

can be preserved by the regularization provided the spatial cutoff Λ2 is time
averaged. In fact, let

AT,a(X) =
1
T

∫ T

0

eiHatXe−iHatdt (12)
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be the time average over [0, T ] of a (bounded) operator X with respect to
the Heisenberg evolution generated by Ha, with a finite or a = B. If a limit
Λ∞

2 = limT→∞AT,B(Λ2) were to exist, it would commute with HB so that

− i
2

(ψλ, { [HB , Λ1] , Λ∞
2 }ψλ) = 0 .

This motivates our definition,

σ1
E := lim

T→∞
lim
a→∞

− i
2

tr ρ′(Ha) { [Ha, Λ1] , AT,a(Λ2)} . (13)

We have the following result [11].

Theorem 1. Under the assumptions (1, 2, 3, 6, 8) the limit in (13) exists,
and

σ1
E = σB .

In particular (13) depend neither on the choice of ρ nor on that of Ea.

Remark 1. (i) The hypotheses (1, 2) hold almost surely for ergodic Schrö-
dinger operators whose Green’s function G(x, x′; z) = (HB − z)−1(x, x′) sat-
isfies a moment condition [3] of the form

sup
E∈∆

lim sup
η→0

E
(
|G(x, x′;E + iη)|s

)
≤ Ce−µ|x−x

′| (14)

for some s < 1. It implies the dynamical localization bound

E

(

sup
g∈B1(∆)

|g(HB)(x, x′)|
)

≤ Ce−µ|x−x
′| , (15)

although (2) has also been obtained by different means, e.g., [12]. The impli-
cation (14) ⇒ (15) was proved in [1] (see also [2, 4, 9]). The bound (15) may
be better known for supp g ⊂ ∆, but is true as stated since it also holds [2,6]
for the projections g(HB) = Pλ, P⊥

λ = 1 − Pλ, (λ ∈ ∆).
(ii) Condition (3), in fact simple spectrum, follows from the arguments

in [19], at least for operators with nearest neighbor hopping, HB(x, y) = 0 if
|x− y| > 1.

(iii) When σ(HB) ∩∆ = ∅, the operator appearing in (7) is known to be
trace class. In this case, the conductance σ1

E coincides with σE defined in (7).
This statement follows from Theorem 1 and the known equality σE = σB
[10, 18], but can also be proven directly.

(iv) A recent paper of Combes and Germinet [7] contains results which
are topically related to but substantially different from the ones presented
here. The detailed comparison can be found in [11].

In the second part of the paper we will outline the simple proof of equality
σB = σE , with σE defined in (7), when ∆ is a spectral gap for HB . Even
though this result was established before by a number of authors, the new
proof highlights some of the ideas used in our generalization of this result,
namely in [11].
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2 Proof of σB = σE

2.1 Some Preliminaries

We are going to use the Helffer-Sjöstrand representation for function ρ(Ha):

ρ(Ha) =
1
2π

∫

dm(z)∂z̄ρ(z)Ra(z) (16a)

ρ′(Ha) = − 1
2π

∫

dm(z)∂z̄ρ(z)R2
a(z) , (16b)

with Ra(z) = (Ha − z)−1. The integral is over z = x+ iy ∈ C with measure
dm(z) = dxdy, ∂z̄ = ∂x + i∂y, and ρ(z) is a quasi-analytic extension of ρ(x)
which for given n can be chosen so that

∫

dm(z) |∂z̄ρ(z)| |y|−p−1 ≤ C
n+2∑

k=0

∥
∥
∥ρ(k)

∥
∥
∥
k−p−1

(17)

for p = 1, ..., n, provided the appearing norms ‖f‖k =
∫

dx(1 + x2)
k
2 |f(x)|

are finite. This is the case for ρ with ρ′ ∈ C∞
0 (R). For p = 1 this shows that

(16b) is norm convergent. The integral (16a), which would correspond to the
case p = 0, is nevertheless a strongly convergent improper integral, see e.g.,
(A.12) of [10]. In particular, we obtain

[ρ(Ha), Λ1] = − 1
2π

∫

dm(z)∂z̄ρ(z)Ra(z) [Ha, Λ1]Ra(z) (18a)

ρ′(Ha) [Ha, Λ1] = − 1
2π

∫

dm(z)∂z̄ρ(z)R2
a(z) [Ha, Λ1] . (18b)

A further preliminary is the Combes-Thomas bound [8]

∥
∥
∥eδ�(x)Ra(z)e−δ�(x)

∥
∥
∥ ≤ C

|Imz| , (19)

where δ can be chosen as

δ−1 = C
(
1 + |Imz|−1

)
(20)

for some (large) C > 0 and �(x) is any Lipschitz function on Z
2 with

|�(x) − �(y)| ≤ |x− y| . (21)

We will also use

trAB = trBA if AB , BA ∈ I1 . (22)
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2.2 Convergence and Trace Class Properties

Let RB(z) := (HB − z)−1. Note that

JaRa(z)J ∗
a −RB(z) = − (JaRa(z)E∗

a + 1 − JaJ ∗
a )RB(z) s−−−→

a→∞
0 (23)

because E∗
a

s−−−→
a→∞

0 by (6) and because 1 − JaJ ∗
a

s−−−→
a→∞

0 is the projection

onto states supported in {x2 < −a}. This implies [17, Theorem VIII.20]

s-lim
a→∞

Jaf(Ha)J ∗
a = f(HB) (24)

for any bounded continuous function f . Moreover, using Combes-Thomas
bound (19) and J ∗

a Ja = 1, together with Holmgren’s bound one can infer
that1

Lemma 1. For any a, a′

[Ha, Λ1]Λ2 ∈ I1 , ρ
′(Ha) [Ha, Λ1] ∈ I1 , [ρ(HB), Λ1] [ρ(HB), Λ1] ∈ I1 ;

(25)
tr ρ′(Ha) [Ha, Λ1] = tr ρ′(Ha′) [Ha′ , Λ1] = lim

a→∞
tr ρ′(Ha) [Ha, Λ1]Λ2 .

(26)

2.3 Edge – Bulk Interpolation

We can now use (18a), (18b) and cyclicity of the trace to rewrite the expres-
sion appearing in the last equation as

tr ρ′(Ha) [Ha, Λ1]Λ2 = − 1
2π

∫

dm(z)∂z̄ρ(z) trRa(z) [Ha, Λ1]Λ2Ra(z)

= tr [ρ(Ha), Λ1]Λ2 −
1
2π

∫

dm(z)∂z̄ρ(z) trR(z)

[Ha, Λ1]Ra(z) [Ha, Λ2]Ra(z) . (27)

The first contribution, computed in the position basis, is seen to vanish. As
for the second contribution, one can use (23) and Combes-Thomas estimate
to obtain

lim
a→∞

trRa(z) [Ha, Λ1]Ra(z) [Ha, Λ2]Ra(z)

= trRB(z) [HB , Λ1]RB(z) [HB , Λ2]RB(z) , (28)

for Imz �= 0. We deduce that

σE = −i tr ρ′(Ha) [Ha, Λ1]

=
i

2π

∫

dm(z)∂z̄ρ(z) trRB(z) [HB , Λ1]RB(z) [HB , Λ2]RB(z) . (29)

1See [11] for details.
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2.4 σE = σB

To finish the proof we need to reduce the rhs of (29) into the form of (4). To
this end, we write

i
2π

∫

dm(z)∂z̄ρ(z) trRB(z) [HB , Λ1]RB(z) [HB , Λ2]RB(z)

=
i

2π

∫

dm(z)∂z̄ρ(z) trPλRB(z) [HB , Λ1]RB(z) [HB , Λ2]RB(z)Pλ

+
i

2π

∫

dm(z)∂z̄ρ(z) tr P̄λRB(z) [HB , Λ1]RB(z) [HB , Λ2]RB(z)P̄λ , (30)

with P̄λ := 1 − Pλ. The first term is equal to

i
2π

∫

dm(z)∂z̄ρ(z) trPλRB(z) [HB , Λ1]RB(z) [HB , Λ2]RB(z)Pλ

=
i

2π

∫

dm(z)∂z̄ρ(z) tr (PλΛ1RB(z) [HB , Λ2]RB(z)Pλ

+ PλRB(z)Λ1 [HB , Λ2]RB(z)Pλ)

= − i
2π

∫

dm(z)∂z̄ρ(z) trPλΛ1 [RB(z), Λ2]Pλ

= −i trPλΛ1 [ρ(HB), Λ2]Pλ
= i trPλΛ1

[
P̄λ, Λ2

]
Pλ = i trPλΛ1P̄λΛ2Pλ , (31)

where the term on the third line vanishes by integration by parts since
PλRB(z) = RB(z)Pλ is analytic on the support of 1 − ρ(z). Similar con-
sideration shows that

i
2π

∫

dm(z)∂z̄ρ(z) tr P̄λRB(z) [HB , Λ1]RB(z) [HB , Λ2]RB(z)P̄λ

= −i tr P̄λΛ1 [Pλ, Λ2] P̄λ = −i tr P̄λΛ1PλΛ2P̄λ . (32)

Since PλΛ1,2P̄λ = Pλ [ρ(HB), Λ1,2] P̄λ, one can deduce from (25) that both
contribution that appear in (31) and (32) are trace class, and one can use
cyclicity of the trace and P 2

λ = Pλ to conclude that

i
2π

∫

dm(z)∂z̄ρ(z) trRB(z) [HB , Λ1]RB(z) [HB , Λ2]RB(z)

= i trPλΛ1P̄λΛ2Pλ − i tr P̄λΛ1PλΛ2P̄λ

= i trPλΛ1P̄λΛ2Pλ − i trPλΛ2P̄λΛ2Pλ = σB(λ) . (33)
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Abstract. We discuss recent results of ours showing that geometric disorder leads
to some purely singularly continuous spectrum generically. This is based on a slight
extension of Simons Wonderland theorem. Our approach to this theorem relies
on the study of generic subsets of certain spaces of measures. In this article, we
elaborate on this purely measure theoretic basis of our approach.

Key words: Random Schrödinger operators, Delone sets, spaces of mea-
sures, 81Q10,35J10,82B44, 28A33,28C15

1 Introduction

In this article we review our work [8] and elaborate on certain measure the-
oretic parts of it. The starting point of [8] is the study of operators

Hω := −∆+
∑

x∈ω
v(· − x)

on L2(Rd), for suitable functions v and certain uniformly discrete subsets ω of
R
d called Delone sets. Such operators arise in the study of disordered solids.

More precisely, they can be thought to model geometric disorder. It is shown
that these operators have a purely singularly continuous spectral component
generically. Here, generic refers to a topology on the set of all Delone sets
(see below for details).

The abstract operator theoretic tool behind our reasoning is a slight
strengthening of a result due to B. Simon called the “Wonderland theo-
rem” [11]. Our method of proving this is different from Simons. It consists
of two steps. We first prove that certain subsets of spaces of measures are
generic. This generalizes the corresponding results of Simon [11] and Zam-
firescu [13] for R to rather general measure spaces. In the second step, the
Wonderland theorem follows by considering spectral measures as continuous
maps from the space of selfadjoint operators to measures on the real line.

Given our version of the Wonderland theorem, our result on generic sin-
gularly continuous spectrum follows from geometric considerations. There,
we approximate arbitrary ω by essentially periodic ones in various ways.

D. Lenz and P. Stollmann: Generic Subsets in Spaces of Measures and Singular Continuous
Spectrum, Lect. Notes Phys. 690, 333–341 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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In the present article, we particularly focus on the measure theoretic side
of things. This is discussed in the next two sections. In particular, Sect. 3
elaborates on the last part of Sect. 2 of [8] and presents a generalization of
Corollary 2.8 given there.

The subsequent discussion of the Wonderland theorem in Sect. 4 and the
application to geometric disorder in Sect. 5 then follows [8] quite closely.

2 Generic Subsets in Spaces of Measures

We will be concerned with subsets of the set of positive, regular Borel mea-
sures M+(S) on some locally compact, σ-compact, separable metric space S.
The closed ball around x ∈ S with radius r is denoted by Br(x). The space
M+(S) is endowed with the weak topology from Cc(S), also called the vague
topology. We refer the reader to [3] for standard results concerning the space
of measures. We will use in particular that the vague topology is metrizable
such that M+(S) becomes a complete metric space. Thus, the Baire category
theorem becomes applicable. For the application to spectral theory, S is just
an open subset U of the real line.

We call a measure µ ∈ M+(S) continuous if its atomic or pure point
part vanishes, i.e. if µ({x}) = 0 for every x ∈ S. (We prefer the former
terminology in the abstract framework and the latter for measures on the
real line.) The set of all continuous measures on S is denoted by Mc(S). A
measure µ is called a point measure if there exists a countable set Y in X
with µ(X \Y ) = 0. The set of all point measures on S is denoted by Mp(S).
This set is dense in M+(S). Two measures are said to be mutually singular,
µ ⊥ ν, if there exists a set C ⊂ S such that µ(C) = 0 = ν(S \C). The set of
all measures on S which are singular with respect to a measure λ is denoted
by Mλ,sing(S).

Our main generic result on spaces of measures reads as follows.

Theorem 1. Let S be a locally compact, σ-compact, separable complete met-
ric space. Then, the following holds:

(1)The set Mc(S) is a Gδ-set in M+(S).
(2) For any λ ∈ M+(S), the set Mλ,sing(S) is a Gδ-set in M+(S).
(3) For any closed F ⊂ S the set {µ ∈ M+(S)| F ⊂ supp(µ)} is a Gδ-set in

M+(S).

3 Singular Continuity of Measures

As a first application of Theorem 1, we obtain a result on genericity of singular
continuous spectrum. This generalizes the corresponding results of Simon [11]
and Zamfirescu [13, 14] for measures on the real line. The first result of this
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section elaborates on Corollary 2.8 of [8] and generalizes the result mentioned
there. The second result seems to be new.

Theorem 2. Let S be be locally compact, σ-compact, separable complete met-
ric space. Let λ be a continuous measure on S with suppλ = S. Then,

{µ ∈ M+(S)| µ continuous and µ ⊥ λ}

is a dense Gδ-set in M+(S).

Proof. The set in question is the intersection of Mc(S) and Mλ,sing(S). By
Theorem 1, Mc(S) and Mλ,sing(S) are Gδ-sets. Thus, by the Baire category
theorem, it remains to show that Mc(S) and Mλ,sing(S) are dense. Denseness
of these two sets follows from continuity of λ: By continuity of λ, Mλ,sing(S)
contains all point measures and is therefore dense. Also, by continuity of λ,
Mc(S) is dense (see e.g. (ii) of the next theorem).

The previous theorem assumes the existence of a suitable measure λ. Such
a λ does not always exist. Instead the following is valid.

Theorem 3. Let S be a locally compact σ-compact separable complete metric
space. Then, the following assertions are equivalent:

(i) There exists a continuous measure λ on S with suppλ = S.
(ii) The set Mc(S) is dense in M+(S).
(iii) S has no isolated points.

Proof. (i)=⇒ (ii): Let x ∈ S be arbitrary. Then, for any n ∈ N, the measure
µn with

µn := λ(B1/n(x))−1λ|B1/n(x)

is continuous. Moreover, the sequence (µn) converges towards the unit point
mass at x. Thus, every point measure can be approximated by continuous
measures. As the point measures are dense, so are the continuous measures.

(ii)=⇒ (iii): This is clear.
(iii)=⇒ (i): We start with the following intermediate result:

Claim. For each closed ball B in S with positive radius, there exists a con-
tinuous probability measure µB whose support is contained in B.

Proof of claim. Denote the metric on S by d. Let x ∈ S and r > 0 with
B = Br(x) be given. As S is locally compact, we can assume without loss of
generality that B is compact.

Define δ0 := r/4 and consider Bδ0(x). By (iii), Bδ0(x) contains two dif-
ferent points x(1)

1 and x
(1)
2 . Set δ1 := 1/4 d(x1

1, x
(1)
2 ) and consider Bδ1(x

(1)
2 )

and Bδ1(x
(1)
2 ). These balls are disjoint and by (ii) each contains two different

points, i.e. there exist x(2)
1 , x(2)

2 in Bδ1(x
(1)
1 ) and x(2)

3 , x(2)
4 in Bδ1(x

(1)
2 ).



336 D. Lenz and P. Stollmann

Set δ2 := 1/4min{d(x(2)
i , x

(2)
j ) : i, j = 1, . . . , 4}. Then, the balls Bδ2(x

(2)
j ),

j = 1, . . . , 4, are disjoint. Proceeding inductively, we can construct for each
n ∈ N a δn > 0 and a set

Xn := {x(n)
1 , . . . , x

(n)
2n }

with 2n elements such that

δn+1 ≤ δn
2
, Xn ⊂ B,

and for each y ∈ B, and n ≥ k, the ball Bδk(y) contains at most 2n−k points
of Xn. Now, consider, for each n ∈ N, the measure

µn :=
1
2n

2n
∑

j=1

δ
x
(n)
j

.

Then each µn is a probability measure supported in B and

µn(Bδk(y)) ≤ 1
2n

× 2n−k = 2−k (1)

for every k ≤ n and y ∈ S. By the Theorem of Banach/Alaoglu, the sequence
(µn) has a converging subsequence. Thus, without loss of generality, we can
assume that the sequence itself converges to a measure µ. As each µn is a
probability measure supported in B and B is compact, µ is a probability
measure supported in B as well. Moreover, by (1), µ is continuous. This
finishes the proof of the claim.

Let D be a countable dense subset of S. For each x ∈ D and n ∈ N,
we can find a continuous probability measure µn,x := µB 1

n
(x) supported in

B 1
n
(x) according to the claim. Now, choose numbers cn,x > 0, x ∈ D and

n ∈ N, with
∑

n∈N,x∈D
cn,x <∞.

Then,
λ :=

∑

n∈N,x∈D
cn,xµn,x

is a continuous measure whose support contains all x ∈ D. As D is dense,
the support of λ equals S and (i) follows.

4 Selfadjoint Operators and the Wonderland Theorem

In this section, we discuss a consequence of Theorem 2 on generic appear-
ance of a purely singular continuous component in the spectrum for certain
Hamiltonians.
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This provides a slight strengthening of Simon’s “Wonderland Theo-
rem”from [11]. The main point of our discussion, however, is not this strength-
ening but rather the new proof we provide.

In order to formulate our result, let us introduce the following notation:
For a fixed separable Hilbert space H consider the space S = S(H) of

self-adjoint operators in H. For ξ ∈ H and A ∈ S let the spectral measure
ρAξ be defined by

ρAξ (ϕ) := 〈ξ, ϕ(A)ξ〉
for each continuous ϕ on R with compact support.

We endow S with the strong resolvent topology τsrs, the weakest topology
for which all the mappings

S → C, A �→ (A+ i)−1ξ (ξ ∈ H)

are continuous. Therefore, a sequence (An) converges to A w.r.t. τsrs if and
only if

(An + i)−1ξ → (A+ i)−1ξ

for all ξ ∈ H. Thus, for each ξ ∈ H, the mapping

ρξ : S −→ M(R), A �→ ρAξ ,

is continuous.
The spectral subspaces of A ∈ S are defined by

Hac(A) = {ξ ∈ H| ρAξ is absolutely continuous}
Hsc(A) = {ξ ∈ H| ρAξ is singular continuous},
Hc(A) = {ξ ∈ H| ρAξ is continuous}
Hpp(A) = Hc(A)⊥,Hs(A) = Hac(A)⊥ .

These subspaces are closed and invariant under A. Hpp(A) is the closed linear
hull of the eigenvectors of A. Recall that the spectra σ∗(A) are just the spectra
of A restricted to H∗(A).

Theorem 4. Let (X, ρ) be a complete metric space and H : (X, ρ) → (S, τsrs)
a continuous mapping. Assume that, for an open set U ⊂ R,

(1) the set {x ∈ X| σpp(H(x)) ∩ U = ∅} is dense in X,
(2) the set {x ∈ X| σac(H(x)) ∩ U = ∅} is dense in X,
(3) the set {x ∈ X| U ⊂ σ(H(x))} is dense in X.

Then, the set

{x ∈ X| U ⊂ σ(H(x)), σac(H(x)) ∩ U = ∅, σpp(H(x)) ∩ U = ∅}

is a dense Gδ-set in X.
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A proof can be sketched as follows (see [8] for details): By assumption H
is continuous. Furthermore, the restriction rU : M(R) −→ M(U), µ �→ µ|U ,
can easily be seen to be continuous as well. Finally, as discussed above, for
each ξ ∈ H, the map ρξ is continuous. Thus, the composition

µξ := rU ◦ ρξ ◦H : X −→ M(U), x �→ ρ
H(x)
ξ |U ,

is a continuous map. Thus, the inverse image of a Gδ-set in M(U) under µξ
is a Gδ-set in X. Thus, by Theorem 1, the sets {x ∈ S : µξ(x) is continuous},
{x ∈ S : µξ(x) is singular w.r.t. Lebesgue measure} and {x ∈ S : suppµξ(x)
contains U} are all Gδ-sets. Moreover, by assumption they are dense. Thus,
their intersection is a dense Gδ-set by the Baire category theorem. One more
intersection over a countable dense subset of ξ ∈ H yields the desired result.
This finishes the proof of the theorem.

We say that the spectrum of A ∈ S is pure point (purely absolutely
continuous, purely singularly continuous) on U ⊂ R if the restrictions ρAξ |U
have the corresponding properties. Of course, if A has pure point (purely
absolutely continuous) spectrum on U it does not have any absolutely con-
tinuous (pure point) spectrum on U . As in [11], the theorem has then the
following immediate but remarkable corollary.

Corollary 1. Let (X, ρ) be a complete metric space and H : (X, ρ) →
(S, τsrs) a continuous mapping. Assume that, for an open set U ⊂ R,

(1) the set {x ∈ X| H(x) has pure point spectrum in U} is dense in X,
(2) the set {x ∈ X| H(x) has purely absolutely continuous spectrum in U} is

dense in X,
(3) the set {x ∈ X| U ⊂ σ(H(x))} is dense in X.

Then, the set

{x ∈ X| U ⊂ σ(H(x)), σac(H(x)) ∩ U = ∅, σpp(H(x)) ∩ U = ∅}

is a dense Gδ-set in X.

5 Operators Associated to Delone Sets

In this section we discuss an application of Theorem 4 to geometric disorder.
We start by recalling the necessary notation. A key notion is the notion

of Delone set, named after B.N. Delone (Delaunay), [6]. The Euclidean norm
on R

d is denoted by ‖ · ‖. We replace B by U to denote open balls.

Definition 1. A set ω ⊂ R
d is called an (r,R)-set if

– ∀x, y ∈ ω, x �= y : ‖x− y‖ > r,
– ∀p ∈ R

d ∃x ∈ ω : ‖x− p‖ ≤ R.
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By Dr,R(Rd) = Dr,R we denote the set of all (r,R)-sets. We say that ω ⊂ R
d

is a Delone set, if it is an (r,R)-set for some 0 < r ≤ R so that D(Rd) =
D =

⋃

0<r≤R Dr,R(Rd) is the set of all Delone sets.

Delone sets turn out to be quite useful in the description of quasicrystals
and more general aperiodic solids; see also [4], where the relation to discrete
operators is discussed. In fact, if we regard an infinitely extended solid whose
ions are assumed to be fixed, then the positions are naturally distributed
according to the points of a Delone set. Fixing an effective potential v for all
the ions this leads us to consider the Hamiltonian

H(ω) := −∆+
∑

x∈ω
v(· − x) in R

d ,

where ω ∈ D. Let us assume, for simplicity that v is bounded, measurable
and compactly supported.

In order to apply our analysis above, we need to introduce a suitable topol-
ogy on D. This can be done in several ways, cf. [4,7]. The emerging topology is
called the natural topology. It defines a compact, complete metrizable topol-
ogy on the set of all closed subsets of R

d for which Dr,R(Rd) is a compact,
complete space. We refrain from giving the exact definition of this topology
here and refer to the cited literature. Instead we note the following lemma,
which describes convergence w.r.t the natural topology.

Lemma 1. A sequence (ωn) of Delone sets converges to ω ∈ D in the natural
topology if and only if there exists for any l > 0 an L > l such that the
ωn ∩ UL(0) converge to ω ∩ UL(0) with respect to the Hausdorff distance as
n→ ∞.

Given the lemma, it is not hard to see that the map

H : Dr,R(Rd) −→ S(L2((Rd)), ω �→ H(ω),

is continuous.
Finally, we recall that a Delone set γ on R

d is called crystallographic if
the set of its periods

Per(γ) := {t ∈ R
d : t+ γ = γ}

is a lattice of full rank in R
d. Now our result on generic singularly continuous

spectrum can be stated as follows.

Theorem 5. Let r,R > 0 with 2r ≤ R and v be given such that there exist
crystallographic γ, γ̃ ∈ Dr,R with σ(H(γ)) �= σ(H(γ̃)). Then

U := (σ(H(γ))◦ \ σ(H(γ̃))) ∪ (σ(H(γ̃))◦ \ σ(H(γ)))

is nonempty and there exists a dense Gδ-set Ωsc ⊂ Dr,R such that for every
ω ∈ Ωsc the spectrum of H(ω) contains U and is purely singular continuous
in U .
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A proof can be sketched as follows (see [8] for details):
We let U1 := σ(H(γ))◦ \ σ(H(γ̃)) and U2 := σ(H(γ̃))◦ \ σ(H(γ)). Since

γ, γ̃ are crystallographic, the corresponding operators are periodic and their
spectra are consequently purely absolutely continuous and consist of a union
of closed intervals with only finitely many gaps in every compact subset of
the reals. Hence, under the assumption of the theorem U1 or U2 is nonempty.
Thus, U is nonempty.

We now consider the case that U1 is nonempty. We will verify conditions
(1)-(3) from Theorem 4.

Ad (1): Fix ω ∈ Dr,R. For n ∈ N consider νn := ω ∩ Q(n). We can
then periodically extend νn, i.e. we find crystallographic ωn in Dr,R with
ωn ∩Q(n) = νn. For given L > 0 we get that ωn ∩ UL(0) = ω ∩ UL(0) if n is
large enough. Therefore, by Lemma 1, we find that ωn → ω with respect to
the natural topology. On the other hand, σpp(H(ωn)) = ∅ since the potential
of H(ωn) is periodic. Consequently,

{ω ∈ Dr,R|σpp(H(ω)) ∩ U1 = ∅}

is dense in Dr,R.
Ad (2): We have to show denseness of ω for which σac(H(ω)) ∩ U1 = ∅.

Thus, fix ω ∈ Dr,R. Then, we can construct ωn which agree with ω around
zero and with γ̃ away from zero. More precisely, for n ∈ N large enough, find
ωn ∈ Dr,R such that

ωn ∩ Un(0) = ω ∩ Un(0) and ωn ∩ U2n(0)c = γ̃ ∩ U2n(0)c .

In virtue of the last property, H(ωn) and H(γ̃) only differ by a compactly
supported, bounded potential, so that σac(H(ωn)) = σac(H(γ̃)) ⊂ U c1 . Again,
ωn → ω yields condition (2) of Theorem 4.

Ad (3): This can be checked with a similar argument as (2), this time
with γ̃ instead of γ. More precisely, fix ω ∈ Dr,R. For n ∈ N large enough, we
find ωn ∈ Dr,R such that

ωn ∩ Un(0) = ω ∩ Un(0) and ωn ∩ U2n(0)c = γ ∩ U2n(0)c .

In virtue of the last property, H(ωn) and H(γ) only differ by a compactly
supported, bounded potential, so that σac(H(ωn)) = σac(H(γ)) ⊃ U1. By
ωn → ω, we obtain (3) of Theorem 4.

As a consequence of these considerations, Theorem 4 gives that

{ω ∈ Dr,R| σpp(H(ω)) ∩ U1 = ∅, σac(H(ω)) ∩ U1 = ∅, U1 ⊂ σ(H(ω))}

is a dense Gδ-set if U1 is not empty. An analogous argument shows the same
statement with U2 instead of U1. This proves the assertion if only one of the
Ui, i = 1, 2, is not empty. Otherwise, the assertion follows after intersecting
the two dense Gδ’s. This finishes the proof of the theorem.
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1 Introduction

One of the central problems in quantum chaos is to obtain a good understand-
ing of the semi-classical behaviour of the eigenfunctions of quantum systems
that have a chaotic Hamiltonian system as their classical limit. The pivotal
result in this context, and the only general one to date, is the Schnirelman
Theorem. Loosely speaking, it states that, if the underlying classical dynam-
ics is ergodic on the appropriate energy surface, then “most” eigenfunctions
of the quantum system equidistribute on this energy surface. The challenge
is to go beyond this theorem. I will report here on the progress that has been
made in this direction in recent years for the special case of quantum maps
on the torus.

Although the present text is meant to be reasonably self-contained, some
familiarity with quantum chaos, for example at the level of [11], is assumed.
I will also allow myself a rather loose discursive style, and present some
speculations and open problems, referring the interested reader to the cited
literature for the hard facts. I have limited the references almost exclusively
to those concerning the quantum maps under study here. For a recent review
of the analogous questions in the context of the geodesic flow and the Laplace-
Beltrami operator on compact Riemannian manifolds, one may consult [26].

The very statement of the Schnirelman theorem immediately invites sev-
eral questions. Given some class of models, one may first of all wonder whether
the equidistribution property does indeed only hold for “most” sequences of
eigenfunctions or if, on the contrary, it holds for all. If you think the second
alternative is true, you are a believer in what has been baptized “unique
quantum ergodicity”. It means you think the proof of the Schnirelman can
be improved, and the restriction to “most” eigenfunctions is due to a short-
coming in the proof. Alternatively, you may believe that the theorem can not
in general be improved, and that exceptional eigensequences exist, that have
a limit that does not equidistribute. In that case, you should try to provide
examples. For billiards, for example, there does exist some numerical and
theoretical evidence for “scars”. This means for eigenfunction sequences that
concentrate – at least partially – on periodic orbits of the dynamics, an ob-
servation that goes back to [19]. The precise sense in which this concentration

S. De Bièvre: Recent Results on Quantum Map Eigenstates, Lect. Notes Phys. 690, 367–381
(2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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takes place and if it is compatible or not with unique quantum ergodicity is
not known, however.

I will explain in these pages what the answer is that has emerged in the
case of a simple class of quantum maps, the so-called Continuous Automor-
phisms of the Torus, or CAT maps. I will also present some recent results on
their perturbations.

2 Perturbed CAT Maps: Classical Dynamics

Let me recall what CAT maps are. Consider the two-torus T
2 = R

2/Z2 and
think of it as a toy classical phase space, which means that you equip the
C∞ functions on T

2 with the usual Poisson bracket

{f, g}(x) = ∂qf(x)∂pg(x) − ∂pf(x)∂qg(x), where x = (q, p) ∈ T
2

or equivalently, that you think of it as a symplectic space with symplec-
tic form dq ∧ dp. This implies in particular that you can associate to every
smooth function g a Hamiltonian flow Φgt , (t ∈ R) which is defined by
Φgt (q, p) = (q(t), p(t)), where (q(t), p(t)) is the solution of the Hamiltonian
equations of motion q̇(t) = ∂pg(x(t)), ṗ(t) = −∂qg(x(t)) with initial condi-
tion q(0) = q, p(0) = p. Note that the Φgt are symplectic maps (or canonical
transformations), meaning they preserve the Poisson brackets:

{f1 ◦ Φgt , f2 ◦ Φgt } = {f1, f2} ◦ Φgt , ∀f1, f2 ∈ C∞(T2) .

Now I will actually be interested in discrete time dynamical systems on T
2.

For that purpose, consider a matrix A ∈ SL(2,Z). That’s a two by two
matrix with integer entries and determinant one. Clearly A defines a linear
map on R

2 that passes naturally to the quotient T
2 = R

2/Z2 because it has
integer entries. Because its determinant is one, it is easily checked that it is
symplectic in the above sense:

{f1 ◦At, f2 ◦At} = {f1, f2} ◦At, ∀f1, f2 ∈ C∞(T2) ,

where this time t is an integer rather than a real number. So A provides
us with a dynamical system that is obtained by folding a linear map onto
a torus and is therefore necessarily quite simple. When |TrA| > 2, such
maps nevertheless have surprisingly rich properties. Indeed, in that case A
has two real eigenvectors v± and two real eigenvalues exp±γ0, with the so-
called Lyapounov exponent γ0 > 0. This implies the dynamical system is
exponentially unstable. Roughly speaking, if x, x′ ∈ T

2 are a small distance
ε apart, then generically Atx and Atx′ will be a distance ε exp γ0t apart: the
dynamics displays sensitive dependence on initial conditions, a well known
source of chaotic behaviour. To put it graphically, if you know that initially
the system point is in some set of linear size ε, all you can say at a time
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of order 1
γ0
|lnε| later is that the system is in a set of size 1, which is not

saying much more than that it is somewhere in the torus, and that is not
saying very much at all. In other words, after a time of order 1

γ0
|lnε| you lost

all information on the whereabouts of the system. This is a very short time
indeed, as you can see by imagining ε = ε010−k: it then grows only linearly
in k. This instability has the consequence that the dynamics is exponentially
mixing. This means that ∀f1, f2 ∈ C∞(T2),

|
∫

T2
(f1 ◦At)(x)f2(x)dx−

∫

T2
f1(x)dx

∫

T2
f2(x)dx |≤ CA,f1 ‖ ∇f2 ‖1 e−γ0t .

Replacing f1 and f2 by characteristic functions of subsets B1 and B2 of the
torus, this can be interpreted as follows: at large times, the probability that a
trajectory starting in some set B2 ends up in B1 converges to the size of B1,
independently of where B1 and B2 are located on the torus. This is again a
way of saying that all information on the whereabouts of the system is rapidly
lost over time. Exponential mixing plays an important role in the following
analysis. It implies furthermore that the dynamics is ergodic, meaning that
for almost all initial conditions x0 ∈ T

2,

1
T

T∑

t=1

f(Atx0) →
∫

T2
f(x)dx .

Note that this can not possibly be true for all initial conditions since there
exists a dense set of periodic points for the dynamics: every point on the
torus that has two rational coordinates is periodic. All these periodic orbits
are unstable, of course. The simplest one is the fixed point x = 0.

These discrete dynamical systems are arguably the simplest fully chaotic
Hamiltonian systems one can find: in particular, the ergodic properties I
mentioned are readily proved by some simple Fourier analysis. This is in sharp
contrast to what happens for other systems. Proving the Sinai or Bunimovich
billiards are ergodic (let alone mixing) is very hard work and the geodesic
flow on a negative curvature Riemannian manifold is also not a particularly
simple object to study.

This is presumably why Hannay and Berry [18] came up with the idea of
constructing a quantum mechanical equivalent to these simple systems, that
I will describe in the next section.

Before turning to that task, let me point out that all the above properties
of the dynamics are preserved if it is perturbed. Let g be a fixed smooth
function on T

2 and consider

Φε = Φgε ◦A .

For small ε, this is still hyperbolic and exponentially mixing, with exponent
γε, limε→0 γε = γ0 [3].
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3 Quantum Maps

What are the discrete quantum dynamical systems that correspond to the
discrete classical dynamical systems described in the previous section? I will
give a much simplified description and refer for details to [5] [11]. To avoid
inessential technicalities, I will consider only the case where A is of the form
(m ∈ N∗)

A =
(

2m 1
4m2 − 1 2m

)

.

Introducing for each a = (a1, a2) ∈ R
2 the phase space translation operator

U(a)ψ(y) = e−
i
2�
a1a2e

i
�
a2yψ(y − a1) = e−

i
�
(a1P−a2Q)ψ(y) ,

the quantum Hilbert space of the system is defined by

H� = {ψ ∈ S ′(R) | U(1, 0)ψ = ψ = U(0, 1)ψ} .

This space is N dimensional when 2π�N = 1 and zero-dimensional otherwise.
Then any ψ ∈ H� can be written as follows:

ψ(y) =
∑

�∈Z

c�δ

(

y − �

N

)

; c�+N = c� .

If A were not of the above form, the definition of H� involves some extra
phases that clutter up the page, which is the only reason why I avoid treating
the general case here. That H� is finite dimensional is not surprising: since
the classical phase space has finite area, and since the uncertainty principle
tells us every quantum state “takes up” an area 2π�, it is normal the Hilbert
space is finite dimensional. This is reminiscent also of what happens when
treating spin, where the classical phase space is a sphere, and the quantum
Hilbert spaces are also finite dimensional.

The relation 2π�N = 1 will always be assumed to hold from now on. So
when both � and N show up in the same formula, they are always related in
that manner. Consequently, the semi-classical limit corresponds to taking N
to infinity. In this spirit, I will occasionally find it useful to write HN rather
than H�.

The standard Weyl quantization is readily adapted to the present situa-
tion. For f ∈ C∞(T2), x = (q, p) ∈ T

2, write

f(x) =
∑

n∈Z2

fne−i2π(n1p−n2q)

and define

OpWf = f̂ =
∑

n∈Z2

fne−i2π(n1P−n2Q) =
∑

n∈Z2

fnU
( n

N

)

: H� → H� .
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The quantum dynamics is now defined as follows. For A ∈ SL(2,Z), | TrA |>
2, construct

M(A)ψ(y) =
(

i

2π�

)1/2 ∫

R

e
i
2�

(2my2−yy′+2my′2)ψ(y′)dy′ .

Then, for all t ∈ Z,

M(A)H� = H� and M(A)−t OpWf M(A)t − OpW(f ◦At) = 0 .

Now, for ε > 0 define the unitary operator

Uε = e−
i
�
εOpWgM(A) : H� → H� .

This is the quantum map we wish to study. It is naturally related to the
discrete Hamiltonian dynamics on T

2 obtained by iterating Φε = Φgε ◦ A. It
acts on the N dimensional spaces H� and we are interested in the behaviour
of its eigenfunctions and eigenvalues in the N → ∞ limit:

Uεψ
(N)
j = eiθ

(N)
j ψ

(N)
j , j = 1 . . . N .

4 What is Known?

Let me start by recalling a precise statement of the Schnirelman theorem in
the present context:

Theorem 1. [5] Let ε ≥ 0 and small. Then, for “almost all” sequences

ψ
(N)
jN

∈ H�, so that Uεψ
(N)
jN

= eiθ
(N)
jN ψ

(N)
jN

,

〈ψ(N)
jN

| OpWf | ψ(N)
jN

〉 N→+∞→
∫

T2
f(x)dx, ∀f ∈ C∞(T2) . (1)

Note that here, for each N , a fixed basis of eigenfunctions has been chosen,
and jN is then an index in the set {1, . . . N}. The “almost all” statement refers
to the fact that one has to choose the jN from a subset GN ⊂ {1, . . . , N}
such that #GN/N → 1. As I already mentioned, this result is ‘robust’: it
holds quite generally whenever the classical system is ergodic. It is proven
in each different situation by adapting arguments that are used to prove it
for other systems, such as Laplace-Beltrami operators on negatively curved
manifolds. This is why it holds also for ε �= 0 and on higher dimensional tori.
With (sometimes considerable) additional work, the proof can be even be
adapted for maps that are not continuous, such as the Baker map [12, 14].
A version of the theorem for certain systems with a mixed phase space also
exists [25].

As pointed out in the introduction, this theorem invites some immediate
and obvious questions:
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Question 1. Do there exist exceptional sequences of eigenfunctions meaning
ones that do not converge semi-classically to Lebesgue measure (this means
(1) does not hold).
Question 2. Can you characterize all possible semi-classical measures? Here
any measure ν on the torus for which there exists some sequence of eigen-
functions ψN�

satisfying

〈ψN�
|OpWf |ψN�

〉 N�→+∞→
∫

T2
f(x)dν, ∀f ∈ C∞(T2) (2)

is called a semi-classical measure. Note that in this definition the sequence
is not necessarily picked from a pre-assigned basis as is the case in the
Schnirelman theorem.

There are of course still other questions that readily come to mind, related
to the speed of convergence in the Schnirelman theorem, as well as to the
fluctuations of the matrix elements that I shall not discuss here. Answers
to the above two questions are not available in general systems. Only in
some restricted classes of models have partial answers been obtained. For
the (Hecke) eigenfunctions of the Laplace-Beltrami operator of a (class) of
constant negative curvature surfaces the answer to this first question has been
proven to be “NO!” [24]. On the other hand, for quantized hyperbolic toral
automorphisms, the answer has been proven to be “YES!”:

Theorem 2. [15] Let ε = 0. Let 0 ≤ α ≤ 1
2 , then there exists Nk → ∞ and

eigenfunctions ψNk
∈ HNk

so that

〈ψNk
|OpWf |ψNk

〉 Nk→+∞→ αf(0) + (1− α)
∫

T2
f(x)dx, ∀f ∈ C∞(T2) . (3)

This theorem holds for any choice of A with |TrA| > 2, not just for the par-
ticular ones discussed here. The sequence Nk depends on A. The construction
(sketched below) yields such a sequence of eigenfunctions for any sequence of
eigenangles θ(Nk)

jNk
of the quantum maps.

Note that this theorem is only stated for the quantized cat maps them-
selves, not for their perturbations. I strongly believe the result does not sur-
vive perturbation, a claim I will try to corroborate below.

Let me first sketch some of the ingredients that go into the proof of
the result. I will indicate how the eigenfunctions with the above property
are constructed in the case α = 1/2. First of all, it is well known that the
quantum maps M(A) have a period: for each N , there exists an integer TN so
that M(A)TN = eiϕN 1lHN

. This implies that the eigenvalues exp iθ(N)
j have

the property:

θ
(N)
j ∈

{
2π
TN

�+
ϕN
TN

|� ∈ Z

}

.

Consequently, the N eigenangles θ(N)
j can take on at most TN distinct equally

spaced values. Let me note in passing that it can be shown that the eigen-
values equidistribute around the circle in the classical limit [6]: this is the
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analog of Weyl’s law in the present context. Now it is easy to see that

Pk =
1
TN

TN/2∑

j=−TN/2+1

e−
i

TN
(2πjk+ϕN j)M(A)j

is a projector. I am supposing TN is even; if it is odd, you sum from −(TN −
1)/2 to (TN−1)/2. If this projector is non-zero, it projects onto the eigenspace
corresponding to the eigenvalue e

i
TN

(2πk+ϕN )
. In particular, if you can find

some non-zero vector φN for which PkφN �= 0, it certainly is an eigenvector.
This suggests it is easy to construct at least some eigenvectors. Now, we are
hunting for eigenvectors that are well localized around the origin in phase
space. The idea is then to take for φN a coherent state centered on the
origin. Recall that in the ordinary quantum mechanics of a system with one
degree of freedom, those are of the form

ηz(y) =
(

Imz
π�

)1/4

exp i
z

2�
y2 ,

where z is a complex number in the upper half plane. By periodicizing this
Gaussian in both the y variable and the dual (Fourier) variable, one obtains a
family |0, z〉 of states in HN that have two crucial properties for our purposes.
First, they are localized at the origin in the sense that, as N → ∞,

|〈0, z|OpWf |0, z〉 − f(0)| ≤ Cf
1 + |z|2
ImzN

. (4)

Next, they behave nicely under the dynamics:

M(A)|0, z〉 = eiσN (A)|0, A · z〉 . (5)

Here σN (A) is a phase that we will not play any role in what follows and

A · z =
2mz + (4m2 − 1)

z + 2m
.

Let us now compute the matrix element of an observable OpWf in an
evolved coherent state: 〈0, At · z|OpWf |0, At · z〉. Since Im(At · z) behaves
like exp−2γ0|t| as |t| → ∞ (the real part being uniformly bounded in time),
the upper bound in (4) then guarantees that, for times t satisfying |t| < 1

2τN ,
where

τN =
1
γ0

lnN ,

this still converges to f(0):

〈0, z|M(A)−tOpWfM(A)t|0, z〉 N→+∞→ f(0) . (6)
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But what happens for longer times? It was proven in [8–10] that, for times
|t| between 1

2τN and 3
2τN , one has instead

〈0, z|M(A)−tOpWfM(A)t|0, z〉 →
∫

T2
f(x)dx . (7)

This is a consequence of the familiar “spreading of the wavepacket”, together
with the exponential instability of the dynamics. One can indeed think of a
coherent state as being concentrated in a region of linear size

√
� in both the

position and momentum variables. Now in the semiclassical regime, evolving
the coherent state with the exponentially unstable dynamics A stretches its
support along the unstable direction v+ to a size

√
� exp γ0t: this is no longer

microscopic if t is of order 1
2γ0

lnN or more so that the estimate (6) breaks
down. Since the unstable manifold through 0, which is just the line Rv+
through the origin, wraps itself ergodically around the torus, estimate (7)
follows. To understand the reason for its breakdown beyond 3

2τN we need to
return to the quantum periods TN .

The quantum periods TN are very irregular functions of N , that grow
roughly linearly in N [20], but that can, for some N , be very much smaller
than that. It is shown in [8] that there exists a sequence Nk for which this
period behaves like 2τN . But this means that, for those values of N

〈0, z|M(A)−(2τN−s)OpWfM(A)2τN−s|0, z〉 = 〈0, z|M(A)sOpWfM(A)−s|0, z〉

and consequently, for times s so that |s| < 1
2τN , and N → ∞,

〈0, z|M(A)−(2τN−s)OpWfM(A)2τN−s|0, z〉 → f(0) .

This explains the breakdown of (7) for times beyond 3
2τN .

This breakdown can also be understood intuitively [8]. The exponen-
tial instability of the classical dynamics explained in Sect. 2 implies that
in the näıvest semi-classical picture of the quantum dynamics the support
of the Wigner function of the evolved coherent states is stretched out over
a length Lt =

√
� exp γ0t along the unstable direction. Now, this sup-

port is wound around the torus, and so successive windings are a distance
Dt = �

−1/2 exp−γ0t apart. But on the torus, for any pair of conjugate vari-
ables Q,P , the uncertainty principle says ∆Q∆P ≥ �, and, since we are on
the torus ∆Q,∆P ≤ 1, so that both ∆Q and ∆P are greater than �! This
means, that on the torus, the Wigner function can not resolve details finer
than on a scale �. Hence one may expect that the above simple semi-classical
picture of the evolution will break down when Dt is of order �, and this is
precisely when t is of order 3

2τN . At this time, interference effects start to
take over. In the case of CAT maps, this leads eventually to the very “unclas-
sical” recurrence at the quantum period, in which the original wave packet
is reconstituted completely for t = TN , and which may be as short as 2τN .

Let me now write
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ψN =
√

TNPk|0, z〉 .
These are our candidate eigenfunctions that will be proven to satisfy (3). The
extra factor

√
TN is a normalization factor the origin of which will become

clear in a second. It is enough to look at (4) and (7) to understand

(i) why this ought to work when N = Nk and
(ii) what the remaining problems are.

First of all, let’s be optimistic and suppose that in computing the ma-
trix element 〈ψN ,OpWfψN 〉 we have to deal only with the diagonal matrix
elements. Let us write

〈ψNk
|OpWf |ψNk

〉 =
1
TNk

TNk
2∑

t=−
TNk

2 +1

〈0, At · z|OpWf |0, At · z〉 + OffDTerms .

(8)
Now taking N → ∞ and using (6) and (7), the sum of the diagonal terms
above converges to the desired 1

2f(0) + 1
2

∫

T2 f(x)dx. This then proves The-
orem 2 provided one can control the off diagonal terms, which requires more
work.

One further idea that goes into this, and that is easily understood intu-
itively, is the following. For positive times t+ larger than 1

2τN , the evolved
coherent states stretches along the unstable manifold of x = 0 in the sense
that its Wigner or Husimi function has a support that is concentrated along
Rv+ over a length Lt+ =

√
� exp γot+. Similarly, in the past, for negative

times −t− so that t− ≥ 1
2τN , the evolved coherent state stretches along the

stable manifold Rv− over a length Lt− . Now these two intervals intersect, for
each such time in only a finite (but growing!) set of homoclinic points. Since a
finite number of points on a line should carry no weight (if all goes well), this
suggests that the evolved states M(A)t+ |0, z〉 and M(A)−t− |0, z〉 are almost
orthogonal. This is indeed what is proven in [15], for times t− + t+ < 2τN .

It should by now be clear why I claim the construction of strongly scarred
eigenstates is particular to quantum CAT maps. Without the existence of
quantum periods (which is already exceptional), and without the rather spe-
cial arithmetic properties guaranteeing the existence of very short quantum
periods, the construction would generate only quasimodes, not eigenvectors.
The construction of strongly scarred eigenstates even breaks down on higher
dimensional tori, since then the maps with short quantum periods do not
exist [7]. All of this indicates that these strongly scarred eigenstates on iso-
lated unstable periodic orbits are a particular feature of the unperturbed
two-dimensional cat maps.

Having answered Question 1 positively, we can now turn to Question 2:
what measures on T

2 can be obtained as limits of the type 〈ψN |OpWf |ψN 〉,
for some sequence of eigenfunctions ψN . It is easy to see that such measures
have to be invariant under the dynamics generated by A. Elaborating a little
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on the above ideas, one can show that, if µ is an A-invariant probability mea-
sure on T

2 that is singular with respect to Lebesgue measure any probability
measure on T

2 of the form

αµ+ (1 − α)dx (9)

is a limit measure provided α ≤ 1/2. This follows from a diagonalization trick
and the well known fact that all invariant probability measures are weak limits
of pure point measures [16]. This is optimal in the following sense:

Theorem 3. [9,16] Let ε = 0. Let µ be an A-invariant pure point measure.
Let α > 1

2 . Then there does not exist Nk → ∞ and eigenfunctions ψNk
∈ HNk

so that

〈ψNk
,OpWfψNk

〉 Nk→+∞→ αµ(f) + (1 − α)
∫

T2
f(x)dx, ∀f ∈ C∞(T2) .

This result was obtained in [9] with a suboptimal bound α > 2/3, which
was then optimized in [16]. Still, this does not completely answer Question 2.
In particular, it is not known what happens to this result if µ is purely
singular continuous or, more specifically, if a purely singular measure can be
a semi-classical limit of the above type. This theorem does continue to hold
on higher dimensional tori, but it is not clear if it is then optimal, for the
reasons explained above.

The sequence Nk in the above construction is very sparse. It behaves
roughly like exp(γ0k/2). It is legitimate to ask what happens if you stay
away from this sequence: are exceptional sequences of eigenfunctions then still
possible? First, one could consider sequences of N along which TN behaves
like στN , with σ > 2. In that cases it is tempting to guess that any measure
of the form (9) is now a semi-classical measure provided α ≤ σ−1. The idea is
that, in the eigenfunction construction sketched above, the fraction of terms
that concentrates at the origin is σ−1. Note however that our estimates do
not imply such a result immediately, since we did not control the dynamics
for times longer than 2τN . Still following the same line of thought, whenever
the sequence of N is chosen so that TN/lnN → ∞, one expects that the
system should be uniquely quantum ergodic along that sequence. Here is a
result that corroborates this conjecture:

Theorem 4. [22] If A ∈ SL(2,Z) is hyperbolic and a11a12 ≡ 0 ≡ a21a22

mod 2, then there exists a density one sequence of integers (Ñ�)�∈N along
which

〈ψÑ�
|OpWf |ψÑ�

〉 Ñ�→+∞→
∫

T2
f(x)dx, ∀f ∈ C∞(T2)

for any sequence of eigenfunctions ψÑ�
.

This is a generalization of the result of [13], where a result of this type is
proven along a subsequence of primes. Clearly, the sequence Ñ� showing up
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here is disjoint from the sequence Nk in Theorem 2. In fact TÑ�
is larger than

√

Ñ�. This result is of course a considerable strengthening of the Schnirelman
theorem for the sequence of N concerned, because it says equidistribution
holds for all sequences of eigenfunctions, not necessarily picked from a pre-
assigned basis, and without any “density one” restriction, as opposed to what
happens in the statement of the Schnirelman theorem.

To end this discussion, I would like to point out one further result that is
fun to compare to Theorem 2:

Theorem 5. [23] If A ∈ SL(2,Z) is hyperbolic and A ≡ I2 mod 4, then
there exists for each N a basis {ψ1, ψ2, . . . ψN} of eigenfunctions of M(A) so
that

〈ψjN |OpWf |ψjN 〉 N→+∞→
∫

T2
f(x)dx, ∀f ∈ C∞(T2) (10)

holds for any sequence ψjN .

This again is an obvious strengthening of the Schnirelman theorem for the
particular class of A considered. Note that the result holds for all N , without
exceptions, so that a superficial reading of this result makes it look as if it
is in contradiction with Theorem 2. The point is that the basis for which
the result holds is explicitly described in the paper. Now, the eigenvalues of
M(A) may be degenerate so that it is possible that exceptional sequences
of eigenfunctions not belonging to the above basis have a different semi-
classical limit. This is precisely what happens with Theorem 2. Actually, since
the quantum Hilbert spaces are N dimensional, the fact that the period is
of order lnNk for the special values of N implies that at least some of the
eigenvalues must be highly degenerate in this case, with degeneracies of order
Nk/lnNk. Although our construction of the exceptional eigenfunctions does
not exploit this degeneracy explicitly, it clearly does so implicitly. Note finally
that the sequence Ñ� of Theorem 4 is such that the quantum periods TÑ�

are

longer than
√

Ñ�. In fact, the authors of that paper show that, whenever the
periods are at least this long along a sequence of integers, quantum unique
ergodicity holds along that sequence. This implies that degeneracies as large
as
√

Ñ� do not suffice to produce strong scarring.

5 Perturbed Cat Maps

CAT maps are rather special: their linearity makes them easy to treat clas-
sically and endows their quantum counterparts with a number of arithmetic
properties that can be exploited to prove a variety of results going beyond the
Schnirelman theorem, as in [13, 22, 23] and to a lesser degree in [8, 9, 15, 16].
Since such results are not available in more complicated systems, the CAT
maps provide a theoretical laboratory in which one can investigate with rela-
tive ease a certain number of questions in quantum chaos. But a real under-
standing of the issues of quantum chaos requires proofs that rely exclusively
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on semi-classical analysis and on the ergodic properties of the underlying
classical dynamics of the systems considered. Indeed, only such proofs have a
fighting chance to give insight into more complicated models, such as billiards
or geodesic flows on negatively curved manifolds, and ultimately more real-
istic models with mixed phase space. Before attacking these systems, a good
starting point is to look at the perturbed CAT maps described in Sect. 2.
They are non-linear and preserve none of the simple arithmetic properties
of the CAT maps themselves, once quantized. Their classical mechanics is
sufficiently complicated that detailed information on their classical mixing
rate has become available only rather recently [3]. On the quantum side, and
contrary to what happens for quantized CAT maps, their eigenvalue statistics
has been shown numerically to be generic [21].

Beyond the Schnirelman theorem, the only theorem in the previous section
the proof of which has a chance to generalize to the case of perturbed maps
is Theorem 3. The simplest version one could hope to prove would be:

If ψN ∈ HN is a sequence of eigenfunctions of Uε, then there exist a
function f so that

lim
N→∞

〈ψN ,OpWfψN 〉 �= f(0).

In other words, this statement says that for a perturbed cat map, the delta
measure at the origin is not a semi-classical measure of the system.

A stragegy of proof of such a result is suggested by the main ingredient
of the proof of Theorem 3 in [10]. The following result is proven there:

Theorem 6. Let ε = 0. Let a0 ∈ T
2. If ϕN ∈ H� is some sequence (not

necessarily eigenfunctions!) with the property that, for all f ∈ C∞(T2)

〈ϕN |OpWf |ϕN 〉 N→+∞→ f(a0)

then there exists a sequence of times tN → ∞ so that

〈ϕN |U−tN
0 OpWf U tN0 |ϕN 〉 N→+∞→

∫

T2
f(x)dx .

If you can prove this result for ε �= 0, then that would imply immediately
that a sequence of eigenfunctions can not concentrate on x = 0, since for
eigenfunctions

〈ψN |OpWf |ψN 〉 = 〈ψN |M(A)−tOpWfM(A)t|ψN 〉 .

The time scales tN involved in the theorem are logarithmic in �, more pre-
cisely, they are of the form (1 + δ) 1

γ0
lnN . So if you want to prove something

like this for ε �= 0, you need to be able to control U tNε at such time scales.
Recall that for the Schnirelman theorem, such long time control is not needed
since there, you take � → 0 first, and only after that exploit ergodicity by
taking t→ ∞.
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In [4], we made some progress on this question. To state the result, we
need a definition:

Definition 1. A sequence ϕN ∈ H� is said to localize at a0 ∈ T
2 if

〈ϕN |OpWf |ϕN 〉 N→+∞−→ f(a0), ∀f ∈ C∞(T2) .

This implies there exists r� → 0 so that
∫

|x−a|≥r�

|〈ϕN , x|z〉|2
dx

2π�

N→+∞−→ 0 .

Here |x, z〉 is the coherent state localized at x ∈ T
2.

Theorem 7. Let Uε be as before. There exists δ0 > 0 with the following
property. Let ψN be a sequence of eigenfunctions of Uε that localizes at some
point a ∈ T

2. Then r� ≥ �
1
2−δ0 .

One can paraphrase this result as follows:

Eigenfunctions do it slowly (if they do it at all).

In other words, a sequence of eigenfunctions can concentrate on a point only if
it does so slowly, meaning that the region in which it concentrates is “large”,
i.e. of linear size of order �

1
2−δ0 . The strategy of the proof is the following:

we first prove an Egorov theorem for the system with control on the error
term for time of order 2

3γε
|ln�|. We then use this result to get information on

the propagation of coherent states, and finally use this to obtain the result.
This result is of course far from optimal: this is largely due to the fact that
we control the dynamics for insufficiently long times. Roughly speaking, and
modulo some other technical problems, to show the desired result along those
lines, one expects to need to control the dynamics up to times (1+ δ) 1

γε
|ln�|.

This is consistent with the observation that such time scales are used in the
proof of Theorem 6 for the unperturbed case. An improvement on the above
result has been announced in [17]: Nonnenmacher has announced he can take
δ0(ε) in such a way that it converges to 1/2 as ε goes to zero. To do this, he
controls the relevant dynamics for times up to (1 − δ(ε)) 1

γε
|ln�|.

A different approach to characterizing semi-classical measures has very
recently been proposed in [1, 2]. In [1], the author investigated the semi-
classical measures on manifolds of negative curvature and shows, modulo an
as yet unproven hypothesis on the eigenfunctions, that their support can
not have small topological entropy. That result implies in particular that
they can not concentrate on a (finite union of) periodic orbit(s). Recently,
Anantharaman has been able to get rid of the extra unproven assumption [2].
If it is confirmed that this last argument does indeed work, then I expect it
to go through also for the perturbed cat maps, with the same result: no semi-
classical measures concentrated on a finite set of periodic orbits. In addition,
since Anantharaman obtains these results with a control on the quantum
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evolution up to times that are only of the form δ 1
γε
|ln�|, this is very good

news for quantum chaos in general: it would mean very strong results on the
eigenfunction behaviour can be obtained with rather minimal control on the
long time quantum evolution, contrary to the general intuition confirmed by
the work described in this note.

Although I have tried to explain that Theorem 2 is particular to quan-
tized CAT maps and that, in my opinion, strong scars on isolated hyperbolic
periodic orbits are not likely to show up in other systems, for those wanting
to prove unique quantum ergodicity in exponentially unstable systems, there
is still a lesson to be learned from Theorem 2: any general strategy based
on semi-classical analysis and ergodic properties of the underlying dynamical
system alone will work for CAT maps as well. But Theorem 2 shows CAT
maps are not uniquely ergodic.
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1 Introduction

The two archetypal ensembles of random matrices are Wigner real symmetric
(Hermitian) random matrices and Wishart sample covariance real (complex)
random matrices. In this paper we study the statistical properties of the
largest eigenvalues of such matrices in the case when the second moments of
matrix entries are infinite. In the first two subsections we consider Wigner
ensemble of random matrices and its generalization – band random matrices.

1.1 Wigner Random Matrices

A real symmetric Wigner random matrix is defined as a square symmetric
n× n matrix with i.i.d. entries up from the diagonal

A = (ajk), ajk = akj , 1 ≤ j ≤ k ≤ n, {ajk}j<k − i.i.d. real random variables .
(1)

The diagonal entries {aii}, 1 ≤ i ≤ n, are usually assumed to be i.i.d.
random variables, independent from the off-diagonal entries. A Hermitian
Wigner random matrix is defined in a similar way, namely as a square n× n
Hermitian matrix with i.i.d. entries up from the diagonal

A=(ajk), ajk=akj , 1≤ j≤ k≤ n, {ajk}j<k−i.i.d. complex random variables .
(2)

As in the real symmetric case, it is usually assumed that the diagonal entries
{aii}, 1 ≤ i ≤ n, are i.i.d. (real) random variables independent from the
off-diagonal entries.

Ensembles (1) and (2) were introduced in mathematical physics by Eu-
gene Wigner in the 1950s ( [44–46]). Wigner viewed these ensembles as a
mathematical model to study the statistics of the excited energy levels of
heavy nuclei.

The famous Wigner’s semicircle law can be formulated as follows. Let the
matrix entries in (1) or (2) be centered random variables with the tail of
distribution decaying sufficiently fast, so that all moments exist. Denote by
λ1 ≥ λ2 ≥ . . . ≥ λn the eigenvalues of a random matrix n−1/2A. Then the

A. Soshnikov: Poisson Statistics for the Largest Eigenvalues in Random Matrix Ensembles,
Lect. Notes Phys. 690, 351–364 (2006)
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empirical distribution function of the eigenvalues converges, as n→ ∞, to a
non-random limit

1
n

#(λi ≤ x, 1 ≤ i ≤ n) → F (x) =
∫ x

−∞
f(t)dt , (3)

where the density of the semicircle law is given by f(t) = 1
πσ2

√
2σ2 − x2, for

t ∈ [−
√

2σ,
√

2σ], and σ2 is the second moment of matrix entries.
This result was subsequently strengthened by many mathematicians (see

e.g. [1, 12, 32]). In its general form (due to Pastur and Girko), the theo-
rem holds if the matrix entries of A satisfy the Lindeberg-Feller condition:
1
n2

∑

1≤i≤j≤n
∫

|x|>τ√n x
2dFij(x) → 0, where Fij(x) is the distribution func-

tion of a(n)
ij .

From the analytical point of view, the simplest examples of Wigner ran-
dom matrices are given by the so-called Gaussian Orthogonal and Uni-
tary Ensembles (GOE and GUE for short). The GUE is defined as the
ensemble of n × n Hermitian matrices with the Gaussian entries /ajk ∼
N(0, 1/2), �ajk ∼ N(0, 1/2), 1 ≤ j < k ≤ n; aii ∼ N(0, 1), 1 ≤ i ≤ n
(see ( [27], Chap. 6). The joint distribution of the matrix entries has the form

P (dA) = constn exp
(

−1
2
Tr(A2)

)

dA , (4)

where dA =
∏

j≤k d/aijd�ajk
∏n
i=1 daii is the Lebesgue measure on the

space of n-dimensional Hermitian matrices. The joint distribution of the
eigenvalues is given by its density

pn(x1, . . . , xn) = Z−1
n

∏

1≤i<j≤n
(xi − xj)2 exp

(

−1
2

∑

i

x2
i

)

. (5)

The normalization constants in (4) and (5) are known. What is more, one
can calculate explicitely the k-point correlation functions (see [27], Chap. 6).
This allows one to study the local distribution of the eigenvalues, both in
the bulk of ths spectrum and at its edges in great detail. In particular, a
celebrated result of Tracy and Widom (see [40]) states that

lim
n→∞

Pr
(

λmax ≤ 2
√
n+

s

n1/6

)

= F2(s) = exp
(

−
∫ +∞

s

(x− s)q2(x)dx
)

,

(6)
where q(x) is the solution of the Painléve II differential equation

q′′(x) = xq(x) + 2q3(x)

with the asymptotics at infinity q(x) ∼ Ai(x) at x = +∞.
The limiting k-point correlation function at the edge of spectrum is given

by the formula
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ρk(x1, . . . , xk) = det (K(xi, xj))1≤i,j≤k , (7)

where

K(x, y) = KAiry(x, y) =
Ai(x)Ai′(y) −Ai′(x)Ai(y)

x− y
(8)

is a so-called Airy kernel. We refer the reader to [40] and [13] for the details.
We recall that the k-point correlation function is defined in such a way that
for any disjoint subintervals of the real line I1, I2, . . . , Ik, one has

E

k∏

i=1

#(Ii) =
∫

I1

. . .

∫

Ik

ρk(x1, . . . , xk)dx1 . . . dxk,

where #(I) denotes the number of the eigenvalues in I. A probabilistic
interpretation of the above formula is that ρk(x1, . . . , xk)dx1 . . . dxk is the
probability to find an eigenvalue in each of the k infinitesimal intervals
[xi, xi + dxi], i = 1, . . . , k.

The Gaussian Orthogonal Ensemble (GOE) is defined as the ensemble of
n × n Wigner real symmetric random matrices with the Gaussian entries.
More precisely, we assume that aij , 1 ≤ i ≤ j ≤ n, are independent Gaussian
N(0, 1 + δij) random variables (see e.g. [27], Chap. 7). The joint distribution
of the matrix entries has the form

P (dA) = cn exp
(

−1
4
Tr(A2)

)

dA , (9)

where dA =
∏

i≤j daij is the Lebesgue measure on the space of n-dimensional
real symmetric matrices. The distribution (9) induces the joint distribution
of the eigenvalues of the GOE matrix, given by its density

pn(x1, . . . , xn) = Z−1
n

∏

1≤i<j≤n
|xi − xj | exp

(

−1
4

∑

i

x2
i

)

. (10)

The limiting distribution of the (normalized) largest eigenvalue of a GOE
matrix was calculated by Tracy and Widom in ( [41]).

lim
n→∞

Pr
(

λmax ≤ 2
√
n+

s

n1/6

)

= F1(s)

= exp
(

−1
2

∫ +∞

s

q(x) + (x− s)q2(x)dx
)

, (11)

The Tracy-Widom distribution (11) was obtained by studying the asymptotic
properties of the k-point correlation functions at the edge of the spectrum.
The k-point correlation function in the GOE ensemble has the pfaffian form.
In the limit n → ∞ the k-point correlation function at the edge of the
spectrum is given by the following formula
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ρk(x1, . . . , xk) =
(

det (K(xi, xj))1≤i,j≤k
)1/2

, (12)

where K(x, y) is a 2 × 2 matrix kernel such that

K11(x, y) = K22(y, x) = KAiry(x, y) +
1
2
Ai(x)

∫ y

−∞
Ai(t)dt, (13)

K12(x, y) = −1
2
Ai(x)Ai(y) − ∂

∂y
KAiry(x, y), (14)

K21(x, y) =
∫ +∞

0

(∫ +∞

x+u

Ai(v)dv
)

Ai(x+ u)du− ε(x− y)

+
1
2

∫ x

y

Ai(u)du+
1
2

∫ +∞

x

Ai(u)du
∫ y

−∞
Ai(v)dv , (15)

where ε(z) = 1
2sign(z).

1.2 Band Random Matrices

A band random matrix is a generalization of a Wigner random matrix en-
semble (1), (2). A real symmetric (aperiodic) band random matrix is defined
as a square symmetric n × n matrix A = (ajk) such that aij = 0 unless
|i− j| ≤ dn, and

{ajk, j ≤ k; |j − k| ≤ dn} − i.i.d. real random variables . (16)

A Hermitian band random matrix is defined in a similar way, namely
as a square n × n Hermitian matrix A = (ajk), such that aij = 0 unless
|i− j| ≤ dn, and

{ajk, j ≤ k; |j − k| ≤ dn} − i.i.d. complex random variables . (17)

If dn = n − 1, we obtain the Wigner ensemble of random matrices. A
matrix is called a periodic band matrix if |i−j| is replaced above by |i−j|1 =
min(|i − j|, n − |i − j|). Band random matrices have been studied in the
last fifteen years (see for example [6, 7, 17, 30]). In the periodic case, the
limiting distribution of the eigenvalues of d−1

n A is given by the semi-circle law,
provided matrix entries have a finite second moment. In the aperiodic case,
the limiting distribution of the eigenvalues is different from the semi-circle
law, unless dn/n → 0 (see e.g. [30]). One of the most interesting problems
involving band random matrices is the localization/delocalization properties
of the eigenvalues. It is conjectured in physical literature, that the eigenvalues
of band random matrices are localized if dn = O(n1/2). As far as we know,
there are no rigorous results yet in this direction.
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1.3 Sample Covariance Random Matrices

Sample covariance random matrices have been studied in mathematical sta-
tistics for the last seventy-five years. We refer to [31], [43] and [19] for the
applications of spectral properties of Wishart random matrices in multivari-
ate statistical analysis.

Let A be a large m×n real rectangular random matrix with independent
identically distributed entries. In applications, one is often interested in the
statistical behavior of the singular values of A in the limit m→ ∞, n→ ∞.
This is equivalent to studying the eigenvalues of a positive-definite matrix
M = AtA in the limit of large dimensions. Without loss of generality, one
can assume that m ≥ n (since the spectrum of AAt differs from the spectrum
of AtA only by a zero eigenvalue of multiplicity m− n.

The analogue of the Wigner semicircle law was proved by Marchenko and
Pastur ( [24]). Let m → ∞, n → ∞ in such a way that m/n → γ ≥ 1.
Assume E|aij |2+ε < +∞, where ε > 0 is an arbitrary positive number. Then
the empirical distribution function of the eigenvalues of 1

mA
tA converges to

a non-random limit, known as the Marchenko-Pastur distribution

1
n

#(λi ≤ x, i = 1, . . . , n) → Gγ(x) =
∫ x

−∞
gγ(t)dt , (18)

where the spectral density g(t) is supported on the interval [a, b], a = σ2(1−
γ−1/2)2, b = σ2(1 + γ−1/2)2, σ2 = Ea2

11, and g(t) = 1
2πtγσ2

√
(b− t)(t− a),

t ∈ [a, b].
The case aij ∼ N(0, 1) 1 ≤ i, j ≤ n, is known in the literature as the

Wishart (Laguerre) ensemble of real sample covariance matrices. The joint
distribution of the eigenvalues of M is defined by its density. Similarly to the
Gaussian ensembles of real symmetric and Hermitian matrices discussed in
Subsect. 1.1, many important statistical quantities in the Wishart ensemble
can be calculated explicitely. For example, the joint probability density of
the eigenvalues is given by the formula

pn(x1, . . . , xn) = Z−1
n,m

∏

1≤i<j≤n
|xi − xj |

n∏

i=1

xm−n−1
i exp(−xi/2) . (19)

It was shown by Johnstone ( [21]), that the largest eigenvalue of a Wishart
random matrix converges, after a proper rescaling, to the Tracy-Widom
distribution F1. Namely, let m → ∞, n → ∞, m/n → γ and µm,n =
(n1/2 +m1/2)2, σm,n = (n1/2 +m1/2)(n−1/2 +m−1/2)1/3. Then

Pr
(
λmax(AtA) ≤ µm,n + sσm,n

)
→ F1(s) (20)

One can also show (see [37]), that the rescaled k-point correlation function
at the edge of the spectrum converge in the limit to (12).
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Finally, we want to remark, that there is a long-standing interest in nu-
clear physics in the spectral properties of the complex sample covariance
matrices A∗A, where the entries of a reactangular matrix A are independent
identically distributed complex random variables (see e.g. [2,5,16,42,46]). We
refer the reader to [37] and the references therein for additional information.

1.4 Universality in Random Matrices

The universality conjecture in Random Matrix Theory states, loosely speak-
ing, that the local statistical properties of a few eigenvalues in the bulk or at
the edge of the spectrum are independent of the distribution of individual ma-
trix entries in the limit of large dimension. The only thing that should matter
is, whether the matrix is real symmetric, Hermitian or self-dual quaternion
Hermitian.

For Wigner random matrices, the conjecture was rigorously proven at the
edge of the spectrum, both for real symmetric and Hermitian case in [36],
provided that all moments of matrix entries exist and do not grow faster
than the moments of a Gaussian distribution, and the odd moments vanish.
In particular, it was shown that the largest eigenvalue, after proper rescaling,
converges in distribution to the Tracy-Widom law. In the bulk of the spec-
trum, the conjecture was proven by Johansson ( [20]) for Wigner Hermitian
matrices, provided the marginal distribution of a matrix entry has a Gaussian
component. We refer to [11] and references therein for the universality results
in the unitary ensembles of random matrices.

The situation for sample covariance random matrices is quite similar (see
papers by Soshnikov [37] and Ben Arous and Péché [3]).

The natural question is how general such results are? What happens if ma-
trix entries have only a finite number of moments? In this article we consider
the extreme case when the entries of A do not have a finite second moment.
In the next section, we discuss spectral properties of Wigner random matri-
ces and, more generally, band random matrices when marginal distribution
of matrix entries has heavy tails. As was shown in [38], the statistics of the
largest eigenvalues of such matrices are given by a Poisson inhomogeneous
random point process. In Sect. 3 we discuss a similar result (although in a
weaker form) for the largest eigenvalues of sample covariance random matri-
ces with Cauchy entries. Section 4 is devoted to conclusions.

2 Wigner and Band Random Matrices
with Heavy Tails of Marginal Distributions

In this section we consider ensembles of Wigner real symmetric and Her-
mitian matrices (1) and (2), and band real symmetric and Hermitian random
matrices (16), (2) with the additional condition on the tail of the marginal
distribution
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G(x) = Pr (|ajk| > x) =
h(x)
xα

, (21)

where 0 < α < 2 and h(x) is a slowly varying function at infinity in a sense
of Karamata ( [22, 34]). In other words, h(x) is a positive function for all
x > 0, such that limx→∞

h(tx)
h(x) = 1 for all t > 0. The condition (21) means

that the distribution of |aij | belongs to the domain of the attraction of a
stable distribution with the index α (see e.g. [18], Theorem 2.6.1).

Without loss of generality, we restrict our attention to the real symmetric
case. The results in the Hermitian case are practically the same. Wigner
random matrices (1), (2) with the heavy tails (21), in the special case when
limit limx→∞ h(x) > 0 exists, were considered on a physical level of rigor
by Cizeau and Bouchaud in [8]. They argued, that the typical eigenvalues of
A are of the order of n1/α. Cizeau and Bouchaud also suggested a formula
for the limiting spectral density of the empirical distribution function of the
eigenvalues of n−1/αA. Unlike the Wigner semicircle and Marchenko-Pastur
laws, the conjectured limiting spectral density is supported on the whole real
line. It was given as

f(x) = L
C(x),β(x)
α/2 (x) , (22)

where LC,βα is a density of a centered Lévy stable distribution defined through
its Fourier transform L̂(k) :

LC,βα =
1
2π

∫

dkL̂(k)eikx, (23)

lnL̂(k) = −C|k|α
(
1 + iβsgn(k) tan(πα/2)

)
, (24)

and functions C(x), β(x) satisfy a system of integral equations

C(x) =
∫ +∞

−∞
|y|α

2 −2L
C(y),β(y)
α/2

(

x− 1
y

)

dy, (25)

β(x) =
∫ +∞

x

L
C(y),β(y)
α/2

(

x− 1
y

)

dy . (26)

We would like to draw the reader’s attention to the fact that the density
in (22) is not a density of a Lévy stable distribution, since C(x), β(x) are
functions of x. Cizeau and Bouchaud argued, that the density f(x) should
decay as 1

x1+α at infinity, thus suggesting that the largest eigenvalues of A
(in the case h(x) = const) should be of order n

2
α , and not n

1
α , which is the

order of typical eigenvalues.
Even though originally proven in [38] in the Wigner case, the theorem

written below holds in the general case of band random real symmetric (or
Hermitian) random matrices (16), (17).

Let Nn be the number of independent (i.e. i ≤ j), non-zero matrix entries
aij in A. In other words, let Nn = #(1 ≤ i ≤ j ≤ n, |i − j| ≤ dn) in
the aperiodic band case, and Nn = #(1 ≤ i ≤ j ≤ n, |i − j|1 ≤ dn) in
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the periodic band case. It is not difficult to see, that Nn = n(n+1)
2 in the

Wigner case, Nn = n(dn + 1) in the periodic band case, and Nn = n×
(dn+1)− dn(dn+1)

2 in the aperiodic band case. Let us define a normalization
constant bn in such a way that

lim
n→∞

NnG(bnx) =
1
xα

, (27)

for all positive x > 0, where the tail distribution G has been defined in (21).
Normalization bn naturally appears (see [23] and Remark 1 below), when
one studies the extremal values of a sequence of Nn independent identically
distributed random variables (21). In particular, one can choose

bn = inf{t : G(t− 0) ≥ 1
Nn

≥ G(t+ 0) . (28)

It follows from (27) and (28), that Nα−δn � bn � Nα+δ
n for arbitrary small

positive δ, and Nnh(bn)
bαn

→ 1 as n→ ∞.

Theorem 1 claims that the largest eigenvalues of A have Poisson statistics
in the limit n→ ∞.

Theorem 1. Let A be a band real symmetric (16) or Hermitian (17) ran-
dom matrix with a heavy tail of the distribution of matrix entries (21). Then
the random point configuration composed of the positive eigenvalues of b−1

n A
converges in distribution on the cylinder sets to the inhomogeneous Poisson
random point process on (0,+∞) with the intensity ρ(x) = α

x1+α .

In other words, let 0 < x1 < y1 < x2 < y2 < . . . xk < yk ≤ +∞, and
Ij = (xj , yj), j = 1, . . . k, be disjoint intervals on the positive half-line. Then
the counting random variables #(Ij) = #(1 ≤ i ≤ n : λi ∈ Ij), j = 1, . . . , k,
are independent in the limit n → ∞, and have a joint Poisson distribution
with the parameters µj =

∫

Ij
ρ(x)dx, i.e.

lim
n→∞

Pr (#(Ij) = sj , j = 1, . . . , k) =
k∏

j=1

µ
sj

j

sj !
e−µj . (29)

For the additional information on Poisson random point processes we refer
the reader to [10].

Corollary 1. Let λk be the k-th largest eigenvalue of b−1
n A, then

lim
n→∞

Pr (λk ≤ x) = exp(−x−α)
k−1∑

l=0

x−lα

l!
. (30)

In particular, limn→∞ Pr (λ1 ≤ x) = exp(−x−α).
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Remark 1. The equivalent formulation of the theorem is the following. Let k
be a finite positive integer. Then the joint distribution of the first k largest
eigenvalues of b−1

n A is asymptotically (in the limit n → ∞) the same as the
joint distribution of the first k order statistics of {b−1

n |aij |, 1 ≤ i ≤ j ≤ n}.
It is a classical result, that extremal values of the sequence of independent
identically distributed random variables with heavy tails distributions (21)
have Poisson statistics (see e.g. [23], Theorem 2.3.1).

Theorem 1 was proven in [38] in the Wigner (i.e. full matrix) case (1), (2).
The proof in the general (band matrix) case is essentially the same. However,
it should be noted, that the original proof of Theorem 1 in [38] contained
a little mistake, which could be easily corrected. The corrections are due in
two places.

First of all, the correct formulation of the part c) of Lemma 4 from [38] (p.
87) should state, that for any positive constant δ > 0, with probability going
to 1 there is no no row 1 ≤ i ≤ n, that contains at least two entries greater
in absolute value than b

3
4+δ
n . In other words, the exponent 1

2 + δ in b
1
2+δ
n

in part c) of Lemma 4 must be replaced by 3
4 + δ. After this correction, the

statement is true. Indeed, the probability that there is a row with at least two

entries greater than b
3
4+δ
n can be estimated from above by n3

(

G(b
3
4+δ
n )

)2

.

It follows from (21), (27) and (28), that this probability goes to zero.
Also, the formula (28) in Lemma 5 (p. 88) should read

Pr {∃i, 1 ≤ i ≤ n : max
1≤j≤n

|aij | > b
3
4+ α

8
n ,




∑

1≤j≤n
|aij |



− max
1≤j≤n

|aij | > b
3
4+ α

8
n } → 0 (31)

as n→ ∞. In other words, the exponent 1
2 + α

4 in b
1
2+ α

4
n must be replaced by

3
4 + α

8 . The key step of the proof of Lemma 5 was to show, that for any fixed
row i and arbitrary small positive δ, the probability Pr (

∑

j:|aij |≤b
1
2 +δ
n

|aij | ≥

b
1
2+2δ
n ) can be estimated from above by exp(−nε), where ε = ε(δ, α) > 0.

We then concluded, that with probability going to 1, there is no row i such
that

∑

j:|aij |≤b
1
2 +δ
n

|aij | ≥ b
1
2+2δ
n . To establish (31), it is enough to prove that

for any fixed row i

Pr






∑

j:b
1/2+δ
n ≤|aij |≤b

3
4 +δ
n

|aij | ≥ b
3
4+2δ
n




 < exp(−nε) , (32)

for sufficiently small positive ε. The proof is very similar to the argument
presented in Lemma 5, and is left to the reader.
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3 Real Sample Covariance Matrices with Cauchy Entries

Let A be a rectangular m×n matrix with independent identically distributed
entries with the marginal probability distribution of matrix entries satisfying
(21). Based on the results in the last section, one can expect that the largest
eigenvalues have Poisson statistics as well. At this point, we have been able
to prove it only in a weak form, and only when matrix entries have Cauchy
distribution.

We recall, that the probability density of the Cauchy distribution is given
by the formula f(x) = 1

π(1+x2) . Cauchy distribution is very important in
probability theory (see e.g. [15]). In particular, Cauchy distribition is a (1,1,0)
stable distribution, i.e. the scale parameter is 1, the index of the distribution
α = 1 and the symmetry parameter is zero (see [18], [23]).

The following theorem was proven by Fyodorov and Soshnikov in [39]

Theorem 2. Let A be a random rectangular m × n matrix (m ≥ n) with
i.i.d. Cauchy entries and let z be a complex number with a positive real part.
Then, as n→ ∞ we have

lim
n→∞

E
(

det
(

1 +
z

m2n2
AtA

))−1/2

= exp
(

− 2
π

√
z

)

= E
∞∏

i=1

(1 + zxi)−1/2 ,

(33)
where we consider the branch of

√
z on D = {z : /z > 0} such that

√
1 = 1,

E denotes the mathematical expectation with respect to the random matrix
ensemble defined above, E denotes the mathematical expectation with respect
to the inhomogeneous Poisson random point process on the positive half-axis
with the intensity 1

πx3/2 , and the convergence is uniform inside D (i.e. it is
unform on compact subsets of D). For a real positive z = t2, t ∈ R1, one can
estimate the rate of convergence, namely

lim
n→∞

E

(

det
(

1 +
t2

m2n2
AtA

))−1/2

= exp
(

− 2
π
|t|
(
1 + o(n−1/2+ε)

)
)

,

(34)
where ε is an arbitrary small positive number and the convergence is uniform
on the compact subsets of [0,+∞).

The result of Theorem 2 allows a generalization to the case of a sparse
random matrix with Cauchy entries. Let, as before, {ajk}, 1 ≤ j ≤ m, 1 ≤
k ≤ n, be i.i.d. Cauchy random variables, and B = (bjk) be a m × n non-
random rectangular 0 − 1 matrix such that the number of non-zero entries
in each column is fixed and equals to dn. Let dn grow polynomially, i.e.
bn ≥ nα, for some 0 < α ≤ 1. Also assume that lnm grows much slower
than than any power of n.

Define a m× n rectangular matrix A with the entries Ajk = bjkajk, 1 ≤
j ≤ m, 1 ≤ k ≤ n. Let λ1 ≥ λ2 . . . ≥ λn denote the eigenvalues of At×
A. The appropriate rescaling for the largest eigenvalues in this case is λ̃i =
λi

m2d2n
, i = 1, . . . , n.
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Theorem 3. Let A be a sparse random rectangular m × n matrix (m ≥ n)
defined as above, and let z be a complex number with a positive real part.
Then, as n→ ∞ we have

lim
n→∞

E

(

det
(

1 +
z

m2d2
n

AtA

))−1/2

= lim
n→∞

E
n∏

i=1

(1 + zλ̃i)−1/2 (35)

= exp
(

− 2
π

√
z

)

= E
∞∏

i=1

(1 + zxi)−1/2 , (36)

where, as in Theorem 1.1, we consider the branch of
√
z on D = {z : /z > 0}

such that
√

1 = 1. E denotes the mathematical expectation with respect to the
inhomogeneous Poisson random point process on the positive half-axis with
the intensity 1

πx3/2 , and the convergence is uniform inside D (i.e. it is unform
on the compact subsets of D). For a real positive z = t2, t ∈ R1, one can get
an estimate on the rate of convergence, namely

E

(

det
(

1 +
t2

m2d2
n

AtA

))−1/2

= exp
(

− 2
π
t
(
1 + o(d−1/2+ε

n )
)
)

, (37)

where ε is an arbitrary small positive number and the convergence is uniform
on the compact subsets of [0,+∞).

The proof relies on the following property of the Gaussian integrals:

(
det(B)

)−1/2 =
(

1
π

)N ∫

x exp
(
−xBxt

)
dN , (38)

where B is an N -dimensional matrix with a positive definite Hermitian part
(i.e. all eigenvalues of B + B∗ are positive), x = (x1, . . . , xN ) ∈ RN , and
xBxt =

∑

ij bijxixj .

Let B = B(t) =
(
Id tiA
tiAt Id

)

. Then, one can write

(
det(1 + t2AtA)

)−1/2 =
(

det
(

1 tiA
tiAt 1

))−1/2

=
(
det(B)

)−1/2
, (39)

and apply (38) to the r.h.s. of (39). Assuming that the entries of A are
independent, one can significantly simplify the expression, using the fact
that entries of A appear linearly in B(t) (see Proposition 1 of [39]). In the
Cauchy case, one can simplify the calculations even further, and prove that

limn→∞E
(

det(1 + z
m2d2n

AtA)
)−1/2

exists and equals exp
(
− 2
π

√
z
)
.

On the other side, for Poisson random point processes the mathematical
expectations of the type E

∏∞
i=1(1 + f(xi)) can be calculated explicitely
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E
∞∏

i=1

(1 + f(xi)) = 1 +
∞∑

k=1

E
∑

1≤i1<i2<...<ik

k∏

j=1

f(xij ) (40)

=
∞∑

k=0

1
k!

∫

(0,+∞)k

k∏

j=1

f(xj)ρk(x1, . . . , xk)dx1 · · · dxk (41)

=
∞∑

k=0

1
k!

(∫

(0,+∞)

f(x)ρ(x)dx

)k

= exp

(∫

(0,+∞)

f(x)ρ(x)dx

)

. (42)

In the equations above, ρk denotes the k-point correlation function, and ρ
denotes the one-point correlation function (also known as intensity). It is a
characteristic property of a Poisson random point process that the k-point
correlation function factorizes as a product of one-point correlation functions,
i.e. ρk(x1, . . . , xk) =

∏k
i=1 ρ(xi). In the context of Theorems 2 and 3, test

function f has the form f(x) = (1+zx)−1/2−1. When the intensity ρ equals
1

πx3/2 , one obtains
∫

(0,+∞)

f(x)ρ(x)dx =
∫

(0,+∞)

((1 + zx)−1/2 − 1)
1

πx3/2
dx = − 2

π

√
z,

which finishes the proof.
The fact, that the intensity ρ(x) = 1

πx3/2 of the Poisson random point
process diverges at zero and is summable at +∞, means, that the the vast
majority of the eigenvalues of the normalized matrix converge to zero in the
limit.

Remark 2. It should be pointed out, that the results of Theorem 2 and 3 do
not imply that the statistics of the largest eigenvalues of a normalized sample
covariance matrix with Gaussian entries are Poisson in the limit of n → ∞.
Indeed, to prove the Poisson statistics in the limit one has to show that

lim
n→∞

E

n∏

i=1

(
1 + f(λ̃i)

)
= E

+∞∏

i=1

(
1 + f(xi)

)
(43)

for a sufficiently large class of the test functions f , e.g. for step functions
with compact support. As we already pointed out, the results of Theorems 2
and 3 claim that (43) is valid for f(x) = (1 + zx)−1/2 − 1 for all z such that
/z > 0.

4 Conclusion

It is known in the theory of random Schrödinger operators, that the statistics
of the eigenvalues is Poisson in the localization regime (see e.g. [28, 29]). It
seems, that the same mechanism is responsible for the Poisson statistics for
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the largest eigenvalues in the random matrix models described above. The
interesting next problem is to find a phase transition between the Tracy-
Widom regime (when all moments of matrix entries exist) and the Poisson
regime (when second moment does not exist).

It is also worth to point out, that there is a vast literature on the Poisson
statistics of the energy levels of quantum sysytems in the case of the regular
underlying dynamics (see e.g. [4, 9, 25,26,33,35]).
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1 Introduction

A perturbative formula for the Lyapunov exponent of a one-dimensional ran-
dom medium for weakly coupled disorder was first given by Thouless [12] and
then proven rigorously by Pastur and Figotin [9]. Anomalies in the pertur-
bation theory at the band center were discovered by Kappus and Wegner [7]
and further discussed by various other authors [2,3,11]. The Lyapunov expo-
nent is then identified with the inverse localization length of the system. This
short note concerns the behavior of the Lyapunov exponent for a low density
of impurities, each of which may, however, be large. The presented method is
as [6,10,11] a further application of diagonalizing the transfer matrices with-
out perturbation (here the low density of impurities) and then rigorously
controlling the error terms by means of oscillatory sums of rotating modi-
fied Prüfer phases. Some of the oscillatory sums remain large if the rotation
phases (here the quasi-momenta) are rational. This leads to supplementary
contributions of the Kappus-Wegner type.

The calucalations are carried through explicitely for the one-dimensional
Anderson model, but the method transposes also to more complicated mod-
els with a periodic background as well as low-density disorder with corre-
lations similar to the random polymer model [6]. Extension to a quasi-one-
dimensional situation as in [11] should be possible, but is even more cumber-
some on a calculatory level. It is also straightforward to calculate and control
higher order terms in the density.

As one motivation for this study (apart from a mathematical one), let us
indicate that a low density of strong impurities seems to describe materials
like carbon nanotubes more adequately than a small coupling limit of the
Anderson model. Indeed, these materials have perfect cristaline structure
over distances of microns which leads to a ballisistic transport over such a
distance [5]. The existing few defects are, on the other hand, quite large.
Coherent transport within a one-particle framework should then be studied
by a model similar to the one considered here. However, it is possible that the
impurties rather play the role of quantum dots so that Coulomb blockade is
the determining effect for the transport properties [8] rather than the coherent
transport studied here.

H. Schulz-Baldes: Low Density Expansion for Lyapunov Exponents, Lect. Notes Phys. 690,
343–350 (2006)
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2 Model and Preliminaries

The standard one-dimensional Anderson Hamiltonian is given by

(Hωψ)n = −ψn+1 − ψn−1 + vnψn , ψ ∈ �2(Z) .

Here ω = (vn)n∈Z is a sequence of independent and identically distributed real
random variables. The model is determined by their probability distribution
p depending on a given density ρ ∈ [0, 1]:

p = (1 − ρ) δ0 + ρ p̃ , (1)

where p̃ is a fixed compactly supported probability measure on R. This mea-
sure may simply be a Dirac peak if there is only one type of impurity, but
different from δ0. Set Σ = supp(p) and Σ̃ = supp(p̃). The expectation w.r.t.
the p’s will be denoted by E, that w.r.t. the p̃’s by Ẽ, while Ev and Ẽv is
the expectation w.r.t. p and p̃ respectively over one random variable v ∈ Σ
only.

In order to define the Lyapunov exponent, one rewrites the Schrödinger
equation Hωψ = Eψ using transfer matrices

(
ψn+1

ψn

)

= TEn

(
ψn
ψn−1

)

. TEn =
(
vn − E −1

1 0

)

.

We also write TEv for TEn if vn = v. Then the Lyapunov exponent at en-
ergy E ∈ R associated to products of random matrices chosen independently
according to p from the family (TEv )v∈Σ of SL(2,R)-matrices is given by

γ(ρ,E) = lim
N→∞

1
N

E log

(
∥
∥
∥

N∏

n=1

TEn

∥
∥
∥

)

. (2)

The aim is to study the asymptotics of γ(ρ,E) in small ρ for |E| < 2.
In order to state our results, let us introduce, for E = −2 cos(k) with

k ∈ (0, π), the basis change M ∈SL(2,R) and the rotation matrix Rk by the
quasi-momentum k:

M =
1

√
sin(k)

(
sin(k) 0

− cos(k) 1

)

, Rk =
(

cos(k) − sin(k)
sin(k) cos(k)

)

.

It is then a matter of computation to verify

MTEv M
−1 = Rk(1 + PEv ) , PEv = − v

sin(k)

(
0 0
1 0

)

.

Next we introduce another auxiliary family of random matrices. Set Σ̂ =
[−π2 ,

π
2 ) × Σ̃ and, for (ψ, v) ∈ Σ̂:
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T̂Eψ,v = RψMTEv M
−1 .

The following probability measures on Σ̂ will play a role in the sequel: p̂∞ =
dψ
π ⊗p̃ and p̂q =

(
1
q

∑q
p=1 δπ

2 ( p
q −

q+1
2q )

)

⊗p̃ for q ∈ N. The Lyapunov exponents
associated to these families of random matrices are denoted by γ̂∞(E) and
γ̂q(E) respectively. It is elementary to check that the subgroups generated
by matrices corresponding to the supports of p̂∞ and p̂q are non-compact
and strongly irreducible, which implies [1] that the corresponding Lyapunov
exponents are strictly positive.

The matrices TEv and T̂Eψ,v induce actions SE,v and ŜE,ψ,v on R via

eSE,v(θ) =
MTEv M

−1eθ
‖MTEv M

−1eθ‖
, eŜE,ψ,v(θ) =

T̂Eψ,veθ

‖T̂Eψ,veθ‖
. (3)

where the freedom of phase is fixed by SE,0(θ) = θ+k and ŜE,ψ,0(θ) = θ+k+ψ
as well as the continuity in v. Invariant measures νE , ν̂E∞ and ν̂Eq for these
actions and the probability measures p, p̂∞ and p̂q are defined by
∫ π

0

dνE(θ) f(θ) =
∫ π

0

dνE(θ)Ev f(SE,v(θ)modπ) , f ∈ C(R/πZ) ,

and similar formulas for ν̂E∞ and ν̂Eq . Due to a theorem of Furstenberg [1], the
invariant measures exist and are unique whenever the associated Lyapunov
exponent is positive. Let us note that one can easily verify that the invariant
measure ν̂E∞ is simply given by the Lebesgue measure dθ

π . Furthermore ν̂E∞
and ν̂Eq do not depend on ρ (but νE does).

Next let us write out a more explicit formula for the new Lyapunov ex-
ponent γ̂∞(E). First of all, according to Furstenberg’s formula [1, 6],

γ̂∞(E) = Êψ,v

∫ π

0

dν̂E∞(θ) log(‖T̂Eψ,v eθ‖) , where eθ =
(

cos(θ)
sin(θ)

)

.

As ν̂E∞ is the Lebesgue measure, rotations are orthogonal and the integrand
is π-periodic, one gets

γ̂∞(E) =
1
2

Ẽv

∫ 2π

0

dθ

2π
log
(

〈eθ|(MTEv M
−1)∗(MTEv M

−1)|eθ〉
)

. (4)

Now (MTEv M
−1)∗(MTEv M

−1) = |1 + PEv |2 is a positive matrix with eigen-

values λv ≥ 1 and 1/λv where λv = 1 + a
2 +

√

a+ a2

4 with a = v2

sin2(k)
. As

it can be diagonalized by an orthogonal transformation leaving the Lebesgue
measure invariant, we deduce that

γ̂∞(E) =
1
2

Ẽv

∫ 2π

0

dθ

2π
log
(

λv cos2(θ) +
1
λv

sin2(θ)
)

=
1
2

∫

dp̃(v) log
(1 + λ2

v

2λv

)

.
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This formula shows immediately that γ̂∞(E) > 0 unless p̃ = δ0 (in which
case λv = λ0 = 1).

3 Result on the Lyapunov Exponent

Theorem. Let E = −2 cos(k) and k ∈ (0, π) with either k
π rational or k

satisfying the weak diophantine condition
∣
∣1 − e2ımk

∣
∣ ≥ c e−ξ

′|m| , ∀ m ∈ Z , (5)

for some c > 0 and ξ′ > 0. Then

γ(ρ,E) =






ρ γ̂∞(E) + O(ρ2) k satisfies (5) ,

ρ γ̂q(E) + O(ρ2) k = π pq ,

where p and q are relatively prime. Furthermore, for ξ depending only on p̃,

| γ̂q(E) − γ̂∞(E) | ≤ c e−ξ|q| .

The result can be interpreted as follows: if the density of the impurities
is small, then the incoming (Prüfer) phase at the impurity is uniformly dis-
trubuted for a sufficiently irrational rotation angle (i.e. quasi-momentum)
because the sole invariant measure of an irrational rotation is the Lebesgue
measure. For a rational rotation, the mixing is to lowest order in ρ perfect
over the orbits of the rational rotation, which leads to the definition of the
family (T̂Ep,σ)(p,σ)∈Σ̂q

and its distribution p̂q. As indicated above, the proof
that this is the correct image is another simple application of modified Prüfer
phases and an oscillatory sum argument.

Let us note that γ̂q(E) �= γ̂∞(E); more detailed formulas for the differ-
ence are given below. As a result, one can expect a numerical curve of the
energy dependence of the Lyapunov exponent at a given fixed low density to
have spikes at energies corresponding to rational quasimomenta with small
denominators. Moreover, the invariant measures νE and ν̂Eq are not close to
the Lebesgue measure, but have higher harmonics as is typical at Kappus-
Wegner anomalies. Furthermore, let us add that at the band center E = 0
the identity γ(ρ, 0) = ρ γ̂0(0) holds with no higher order correction terms and
where γ̂0(0) is the center of band Lyapunov exponent of the usual Anderson
model with distribution p̃.

Finally, let us compare the above result with that obtained for a weak-
coupling limit of the Anderson model [6, 9]: the Lyapunov exponent grows
quadratically in the coupling constant of the disordered potential, while it
grows linearly in the density. The reason is easily understood if one thinks of
the change of the coupling constant also rather as a change of the probability
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distribution on the space of matrices. At zero coupling, the measure is sup-
ported on one critical point (or more generally, on a commuting subset), and
the weight in its neighborhood grows as the coupling constant grows. In (1)
the weight may grow far from the critical point, and this leads to the faster
increase of the Lyapunov exponent.

4 Proof

For fixed energy E, configuration (vn)n∈N and (ψn)n∈N, as well as an initial
condition θ0, let us define iteratively the seqences

θn = SE,vn
(θn−1) , θ̂n = ŜE,ψn,vn

(θ̂n−1) = SE,vn
(θ̂n−1) + ψn . (6)

When considered modulo π, these are also called the modified Prüfer phases.
They can be efficiently used in order to calculate the Lyapunov exponent as
well as the density of states. For the Lyapunov exponent, let us first note that
one can make a basis change in (2) at the price of boundary terms vanishing
at the limit, and furthermore, that according to [1, A.III.3.4] it is possible to
introduce an arbitrary initial vector, so that

γ(ρ,E) = lim
N→∞

1
N

E log

(
∥
∥
∥

( N∏

n=1

MTEn M
−1
)

eθ

∥
∥
∥

)

. (7)

Now using the modified Prüfer phases with initial condition θ0 = θ, this can
be developed into a telescopic sum:

γ(ρ,E) = lim
N→∞

1
N

E
N∑

n=1

log
(∥
∥
∥MTEn M

−1eθn−1

∥
∥
∥

)

= ρ lim
N→∞

1
N

E
N∑

n=1

Ẽv log
(∥
∥
∥MTEv M

−1eθn−1

∥
∥
∥

)

,

where in the second step we have evaluated the partial expectation over the
last random variable vn by using the fact that for vn = 0 the contribution
vanishes. Next let us note that the function eıθ �→ Ẽv log(‖MTEv M

−1eθ‖)
has an analytic extension to C\{0}, contains only even frequencies so that
its Fourier series

Ẽv log
(∥
∥
∥MTEv M

−1eθ

∥
∥
∥

)

=
∑

m∈Z

am e2ımθ ,

has coefficients satisfying for any ξ > 0 a Cauchy estimate of the form

|am| ≤ cξ e
−ξ|m| . (8)

Comparing with (4), we deduce
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a0 = γ̂∞(E) .

Introducing now the oscillatory sums

Im(N) = E
1
N

N∑

n=1

e2ımθn , Îm(N) = Ê
1
N

N∑

n=1

e2ımθ̂n ,

the Lyapunov exponent now reads

γ(ρ,E) = ρ
∑

m∈Z

am lim
N→∞

Im(N) . (9)

Hence we need to calculate Im(N) perturbatively in ρ. Clearly I0(N) = 1.
Furthermore, integrating over the initial condition w.r.t. the invariant mea-
sure gives for all N ∈ N

∫

dνE(θ) Im(N) =
∫

dνE(θ) e2ımθ .

Hence calculating Im(N) perturbatively also gives the harmonics of νE per-
turbatively (similar statements hold for Îm(N), of course). Going back in
history once, one gets

Im(N) =
1
N

E
N∑

n=1

(

(1 − ρ) e2ımk e2ımθn−1 + ρ Ẽv(e2ımSE,v(θn−1))
)

= (1 − ρ) e2ımk Im(N) + O(ρ,N−1) .

For k satisfying (5), one deduces

|Im(N)| ≤ 1
|1 − (1 − ρ) e2ımk| O(ρ,N−1) ≤ c eξ

′|m| O(ρ,N−1) .

Replacing this and (8) with ξ > ξ′ into (9) concludes the proof in this case
because only the term m = 0 gives a contribution to order ρ.

If now k = π pq , the same argument implies

Inq+r(N) = O(ρ,N−1) , ∀ n ∈ Z , r = 1, . . . , q − 1 . (10)

Setting
Ẽv(e2ımSE,v(θ)) =

∑

l∈Z

b
(m)
l e2ı(m+l)θ ,

and
Êψ,v(e2ımŜE,ψ,v(θ)) =

∑

l∈Z

b̂
(m)
l e2ı(m+l)θ ,

one deduces for the remaining cases
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Inq(N) = (1 − ρ) Inq(N) + O(N−1) + ρ
∑

l∈Z

b
(nq)
l

(
Inq+l(N) + O(N−1)

)
.

Due to (10), this gives the following equations

Inq(N) =
∑

r∈Z

b(nq)rq I(n+r)q(N) + O((ρN)−1, ρ) .

They determine the invariant measure νE to lowest order in ρ. This shows,
in particular, that νE is already to lowest order not given by the Lebesgue
measure. We will not solve these equations, but rather show that the oscilla-
tory sums Înq(N) satisfy the same equations, and hence, up to higher order
corrections, the measure ν̂Eq can be used instead of νE in order to calculate
the Lyapunov exponent. Indeed, it follows directly from (6) and the definition
of p̂q that

b̂
(m)
l = δmmodq=0 b

(m)
l .

In particular, Îm(N) = 0 if mmod q �= 0. Thus we deduce

Înq(N) =
∑

r∈Z

b(nq)rq Î(n+r)q(N) + O(N−1) .

Comparing the equations for Inq(N) and Înq(N) (which have a unique solu-
tion becaue the invariant measures are unique by Furstenberg’s theorem), it
follows that

Înq(N) = Inq(N) + O(ρ, (ρN)−1) .

Replacing this into (9), one deduces

γ(ρ,E) = ρ
∑

m∈Z

am

∫

dν̂Eq (θ) e2ımθ + O(ρ2)

= ρ

∫

dν̂Eq (θ) Ẽv log
(∥
∥
∥MTEv M

−1eθ

∥
∥
∥

)

+ O(ρ2) .

Now due to the orthogonality of rotations one may replace MTEv M
−1 by

T̂Eψ,v, and then the r.h.s. contains exactly the Furstenberg formula for γ̂q(E)
as claimed. The estimate comparing γ̂q(E) and γ̂∞(E) follows directly from
the Cauchy estimate (8).

5 Result on the Density of States

Another ergodic quantity of interest is the integrated density of states, defined
by

N (ρ,E) = lim
N→∞

1
N

E #
{

neg. eigenvalues of Hω − E on �2({1, . . . , N})
}

.
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Recall, in particular, that N (0, E) = k if E = −2 cos(k). Defining the mean
phase shift of the impurities by

ϕ̃(θ) = Ẽv(SE,v(θ) − θ) ,

the low density expansion of the density of states reads as follows:

N (ρ,E) =






(1 − ρ) k + ρ
∫
dθ
2π ϕ̃(θ) + O(ρ2) k satisfies (5) ,

(1 − ρ) k + ρ
∫
dν̂Eq (θ) ϕ̃(θ) + O(ρ2) k = π pq

with p and q relatively prime. The proof of this is completely analogous to the
above when the rotation number calculation (e.g. [6] for a proof) is applied:

N (ρ,E) = lim
N→∞

1
N

E
N∑

n=1

(
SE,v(θn−1) − θn−1

)

= (1 − ρ) k + ρ lim
N→∞

1
N

E
N∑

n=1

ϕ̃(θn−1) .
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1 A Heuristic Description

This report is devoted to the study of the spectral properties of the fam-
ily of one-dimensional quasi-periodic Schrödinger operators acting on L2(R)
defined by

Hz,εψ = − d2

dx2
ψ(x) + (V (x− z) + α cos(εx))ψ(x) , (1)

where

(H1) V : R → R is a non constant, locally square integrable, 1-periodic
function;

(H2) ε is a small positive number chosen such that 2π/ε be irrational;
(H3) z is a real parameter indexing the operators;
(H4) α is a strictly positive parameter.

Quasi-periodic operators of the type (1) (and their discrete analogs) are stan-
dard models used to described the motion of an electron in a deterministic
disordered system (see [3, 18,20]).

It is well known that the spectral type of these operators depends on the
energies at which one looks at them ( [7]); Anderson transitions do occur
in some regions ( [10]) whereas other regions display “essentially” purely
absolutely continuous ( [9]) or purely singular spectrum ( [8]). In the present
note, we review an energy region where the spectrum of the operator displays
energy level repulsion and show how this repulsion, more precisely its strength
relates to the spectral nature of the operator. The material is taken from [5,6].

To describe the energy region where we work, consider the spectrum of
the periodic Schrödinger operator (on L2(R))

H0 = − d2

dx2
+ V (x) (2)

A. Fedotov and F. Klopp: Level Repulsion and Spectral Type for One-Dimensional Adiabatic
Quasi-Periodic Schrödinger Operators, Lect. Notes Phys. 690, 383–402 (2006)
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E − α E E + α

Fig. 1. Bands in interaction

We assume that two of its spectral bands are interacting through the
perturbation α cos i.e., that the relative position of the spectral window
F(E) := [E − α,E + α] and the spectrum of the unperturbed operator H0

is that shown in Fig. 1. In such an energy region, the spectrum is localized
near two sequences of quantized energy values, say (E(l)

0 )l and (E(l′)
π )′l (see

Theorem 1); each of these sequences is “generated” by one of the ends of
the neighboring spectral bands of H0. In [6], we study neighborhoods of such
quantized energy values that are not resonant i.e. to neighborhoods of points
E

(l)
µ that are not “too” close to the points (E(l′)

ν )′l for {µ, ν} = {0, π}. The
distance between the two sequences influences the nature and location of the
spectrum: a weak level repulsion arises due to “weakly resonant tunneling”.

Similarly to what happens in the standard “double well” case (see [13,
19]), the resonant tunneling begins to play an important role when the two
energies, each generated by one of the quantization conditions, are sufficiently
close to each other.

In the resonant case, we find a strong relationship between the level
repulsion and the nature of the spectrum. Recall that the latter is deter-
mined by the nature of the genralized eignefunctions i.e. the solutions to
(Hz,ε − E)ψ = 0 (see [12]): localized or delocalized. Thus, it is very natural
that the two characteristics are related: the slower the decay of the general-
ized eigenfunctions, the larger the overlap between generalized eigenfunction
corresponding to close energy levels, hence, the larger the tunneling between
these levels and thus the repulsion between them.

Let us now briefly describe the various situations we encounter. Let J be
an interval of energies such that, for all E ∈ J , the spectral window F(E)
covers the edges of two neighboring spectral bands of H0 and the gap located
between them (see Fig. 1 and assumption (TIBM)). Under this assumption,
consider the real and complex iso-energy curves associated to (1). Denoted
respectively by ΓR and Γ , they are defined by

ΓR := {(κ, ζ) ∈ R
2, E(κ) + α · cos(ζ) = E} , (3)

Γ := {(κ, ζ) ∈ C
2, E(κ) + α · cos(ζ) = E} . (4)

where E(κ) be the dispersion relation associated to H0. These curves are
roughly depicted in Fig. 2. They are periodic both in the ζ and κ variables.
Consider one of the periodicity cells of ΓR. It contains two tori. They are
denoted by γ0 and γπ and shown in full lines. Integrating 1/2 times the
fundamental 1-form on Γ along γ0 and γπ, one defines the phases Φ̌0 and
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Fig. 2. The adiabatic phase space

Φ̌π (see Theorem 1). Each of these phases defines a sequence of “quantized
energies” in J , say, for (l,m) ∈ N

2,

1
ε
Φ̌0(E

(l)
0 ) =

π

2
+ lπ , (5)

1
ε
Φ̌π(E(m)

π ) =
π

2
+mπ . (6)

Each of the dashed lines in Fig. 2 represents a loop on Γ that connects certain
connected components of ΓR; one can distinguish between the “horizontal”
loops and the “vertical” loops. There are two special horizontal loops denoted
by γh,0 and γh,π; the loop γh,0 (resp. γh,π) connects γ0 to γπ − (2π, 0) (resp.
γ0 to γπ). In the same way, there are two special vertical loops denoted by
γv,0 and γv,π ; the loop γv,0 (resp. γv,π) connects γ0 to γ0 + (0, 2π) (resp.
γπ to γπ + (0, 2π)). To each of these complex loops, one associates an action
obtained by integrating −i/2 times the fundamental 1-form on Γ along the
loop. For a ∈ {0, π} and b ∈ {v, h}, we denote by Sa,b the action associated
to γa,b. For E ∈ R, all these actions are real. One orients the loops so that
they all be positive. Finally, we define tunneling coefficients as

ta,b = e−Sa,b/ε, a ∈ {0, π}, b ∈ {v, h} .

In Theorem 1, we prove that, for a ∈ {0, π}, near each E(l)
a , there is an expo-

nentially small interval I(l)
a such that the spectrum of Hz,ε in J is contained

in the union of these intervals. The precise description of the spectrum in the
interval I(l)

a depends on whether it intersects another such interval or not.
Note that an interval of type I(l)

0 can only intersect intervals of type I(l)
π and

vice versa.
In the present report, we consider two intervals I(l)

0 and I
(l′)
π that do

intersect and describe the spectrum in the union of these two intervals. It is
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useful to keep in mind that this union is exponentially small (when ε goes to
0).

There are two main parameters controlling the spectral type:

τ = 2

√

tv,0 tv,π
th,0 th,π

and ρ = 2

√

max(tv,0, tv,π)2

th,0 th,π

As we are working inside an exponentially small interval, the point inside
this interval at which we compute the tunneling coefficients does not really
matter: over this interval, the variation of any of the actions is exponentially
small.

We essentially distinguish three regimes:

– τ � 1,
– ρ� 1 and τ � 1,
– ρ� 1.

The symbol � 1 (resp. � 1) mean that the quantity is exponentially small
(resp. large) in 1

ε as ε goes to 0, the exponential rate being arbitrary.
In each of the three cases, we consider two energies, say E0 and Eπ,

satisfying respectively (5) and (6), and describe the evolution of the spectrum
as E0 and Eπ become closer to each other. As the quantization conditions (5)
and (6) show, this can be achieved by reducing ε somewhat. As noted above,
when moving E0 and Eπ closer together, we stay in the same regime for τ
and ρ.

In the case τ � 1, when E0 and Eπ are still “far” away from each other,
one sees two intervals containing spectrum, one located near each energy;
they contain the same amount of spectrum i.e. the measure with respect to
the density of states of each interval is ε/2π; and the Lyapunov exponent is
positive on both intervals (see Fig. 5(a)). When E0 and Eπ approach each
other, the picture does not change except for the fact that the intervals in-
tersect, so only a single interval is seen (see Fig. 5(b)); its density of states
measure is ε/π and the Lyapunov exponent is positive on this interval. There
is no gap separating the intervals of spectrum generated by the two quanti-
zation conditions. This can be interpreted as a consequence of the positivity
of the Lyapunov exponent : the states are well localized so the overlapping is
weak and there no level repulsion. Nevertheless, the resonance has one effect:
when the two intervals intersect, it gives rise to a sharp drop of the Lyapunov
exponent (which stays positive) in the middle of the interval containing spec-
trum. Over a distance exponentially small in ε, the Lyapunov exponent drops
by an amount of order one.

In the other extreme, in the case ρ � 1, the starting geometry of the
spectrum is essentially the same as in the previous case, namely, two well
separated intervals containing each an ε/2π “part” of spectrum. The main
difference is that each of these intervals now essentially only contains ab-
solutely continuous spectrum. As the energies E0 and Eπ approach each
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other, so do the intervals until they roughly reach an interspacing of size√
th; during this process, the size of the intervals which, at the start, was

roughly of order tv,0 + th and tv,π + th grew to reach the order of
√
th (this

number is much larger than any of the other two as ρ� 1). When E0 and Eπ
move closer to each other, the intervals containing spectrum stay “frozen” at
a distance of size

√
th from each other, and their sizes do not vary noticeably

either (see Fig. 6). They start moving and changing size again when E0 and
Eπ again become separated by an interspacing of size at least

√
th. So, in this

case, we see a very strong repulsion preventing the intervals of spectra from
intersecting each other. The interspacing is quite similar to that observed in
the case of the standard double well problem (see [13,19]).

In the last case, when ρ� 1 and τ � 1, we see an intermediate behavior.
For the sake of simplicity, let us assume that tv,π � tv,0. Starting from the
situation when E0 and Eπ are far apart, we see two intervals, one around
each point E0 and Eπ and this as long as |E0 − Eπ| � tv,π (see Fig. 7(a)).
As in the first case, the Lyapunov exponent varies by an amount of order
one over each of the exponentially small intervals. The difference is that it
need not stay positive: at the edges of the two intervals that are facing each
other, it becomes small and even can vanish. These edges seem more prone
to interaction. When now one moves E0 towards Eπ, the lacuna separating
the two intervals stays open and starts moving with E0; it becomes roughly
centered at E0, stays of fixed size (of order th/tv,π) and moves along with E0

as E0 crosses Eπ and up to a distance roughly tv,π on the other side of Eπ
(see Fig. 7(b)). Then, when E0 moves still further away from Eπ, it becomes
again the center of some interval containing spectrum that starts moving
away from the band centered at Eπ. We see that, in this case as in the case
of strong repulsion, there always are two intervals separated by a gap; both
intervals contain a ε/2π “part” of spectrum. But, now, the two intervals can
become exponentially larger than the gap (in the case of strong interaction,
the length of the gap was at least of the same order of magnitude as the
lengths of the bands). Moreover, on both intervals, the Lyapunov exponent
is positive near the outer edges i.e. the edges that are not facing each other;
it can become small or even vanish on the inner edges. So, there may be some
Anderson transitions within the intervals. We see here the effects of a weaker
form of resonant tunneling and a weaker repulsion.

2 Mathematical Results

We now state our assumptions and results in a precise way.
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2.1 The Periodic Operator

This section is devoted to the description of elements of the spectral theory
of one-dimensional periodic Schrödinger operator H0 that we need to present
our results. For proofs and more details, we refer to [4, 11].

The Spectrum of H0

The spectrum of the operator H0 defined in (2) is a union of countably many
intervals of the real axis, say [E2n+1, E2n+2] for n ∈ N , such that

E1 < E2 ≤ E3 < E4 . . . E2n ≤ E2n+1 < E2n+2 ≤ . . . ,

En → +∞, n→ +∞.

This spectrum is purely absolutely continuous. The points (Ej)j are the
eigenvalues of the self-adjoint operator obtained by considering the differ-
ential polynomial (2) acting in L2([0, 2]) with periodic boundary conditions
(see [4]). For n ∈ N, the intervals [E2n+1, E2n+2] are the spectral bands, and
the intervals (E2n, E2n+1), the spectral gaps. When E2n < E2n+1, one says
that the n-th gap is open; when [E2n−1, E2n] is separated from the rest of the
spectrum by open gaps, the n-th band is said to be isolated. Generically all
the gap are open.

From now on, to simplify the exposition, we suppose that

(O) all the gaps of the spectrum of H0 are open.

The Bloch Quasi-Momentum

Let x �→ ψ(x,E) be a non trivial solution to the periodic Schrödinger equation
H0ψ = Eψ such that ψ (x + 1, E) = µψ (x,E), ∀x ∈ R, for some µ ∈ C

∗

independent of x. Such a solution is called a Bloch solution to the equation,
and µ is the Floquet multiplier associated to ψ. One may write µ = exp(ik)
where, k is the Bloch quasi-momentum of the Bloch solution ψ.

It appears that the mapping E �→ k(E) is analytic and multi-valued; its
branch points are the points {En; n ∈ N}. They are all of “square root” type.

The dispersion relation k �→ E(k) is the inverse of the Bloch quasi-
momentum.

2.2 A “Geometric” Assumption
on the Energy Region Under Study

Let us now describe the energy region where our study is valid.
Recall that the spectral window F(E) is the range of the mapping ζ ∈

R �→ E − α cos(ζ).
In the sequel, J always denotes a compact interval such that, for some

n ∈ N
∗ and for all E ∈ J , one has
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(TIBM) [E2n, E2n+1] ⊂ Ḟ(E) and F(E) ⊂]E2n−1, E2n+2[.

where Ḟ(E) is the interior of F(E) (see Fig. 1).

Remark 1. As all the spectral gaps of H0 are assumed to be open, as their
length tends to 0 at infinity, and, as the length of the spectral bands goes
to infinity at infinity, it is clear that, for any non vanishing α, assumption
(TIBM) is satisfied in any gap at a sufficiently high energy; it suffices that
this gap be of length smaller than 2α.

2.3 The Definitions of the Phase Integrals
and the Tunelling Coefficients

The Complex Momentum and its Branch Points

The phase integrals and the tunelling coefficients are expressed in terms of
integrals of the complex momentum. Fix E in J . The complex momentum
ζ �→ κ(ζ) is defined by

κ(ζ) = k(E − α cos(ζ)) . (7)

As k, κ is analytic and multi-valued. The set Γ defined in (4) is the graph of
the function κ. As the branch points of k are the points (Ei)i∈N, the branch
points of κ satisfy

E − α cos(ζ) = Ej , j ∈ N
∗ . (8)

As E is real, the set of these points is symmetric with respect to the real
axis, to the imaginary axis and it is 2π-periodic in ζ. All the branch points
of κ lie on arccos(R) which consists of the real axis and all the translates
of the imaginary axis by a multiple of π. As the branch points of the Bloch
quasi-momentum, the branch points of κ are of “square root” type.

Due to the symmetries, it suffices to describe the branch points in the half-
strip {ζ; Imζ ≥ 0, 0 ≤ Reζ ≤ π}. These branch points are described in detail
in section 7.1.1 of [6]. In Fig. 3, we show some of them. The points ζj being
defined by (8), one has 0 < ζ2n < ζ2n+1 < π, 0 < Imζ2n+2 < Imζ2n+3 < · · · ,
0 < Imζ2n−1 < · · · < Imζ1.

The Contours

To define the phases and the tunneling coefficients, we introduce various
integration contours in the complex ζ-plane.

These loops are shown in Fig. 3 and 4. The loops γ̃0, γ̃π, γ̃h,0, γ̃h,π,
γ̃v,0 and γ̃v,π are simple loops, respectively, going once around the intervals
[−ζ2n, ζ2n], [ζ2n+1, 2π−ζ2n+1], [−ζ2n+1,−ζ2n], [ζ2n, ζ2n+1], [ζ2n−1, ζ2n−1] and
[ζ2n+2, ζ2n+2].

On each of the above loops, one can fix a continuous branch of the complex
momentum.
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0 π

ζ2n+2

ζ2n+1

ζ2n

ζ2n−1

γ̃πγ̃0

Fig. 3. The loops for the phase integrals

Fig. 4. The loops for the action integrals

Consider Γ , the complex isoenergy curve defined by (4). Define the pro-
jection Π : (ζ, κ) ∈ Γ �→ ζ ∈ C. The fact that, on each of the loops γ̃0,
γ̃π, γ̃h,0, γ̃h,π, γ̃v,0 and γ̃v,π, one can fix a continuous branch of the complex
momentum implies that each of these loops is the projection on the complex
plane of some loop in Γ (see [6]). The curves γ0, γπ, γh,0, γh,π, γv,0 and γv,π
represented in Fig. 2 are mapped onto the curves γ̃0, γ̃π, γ̃h,0, γ̃h,π, γ̃v,0 and
γ̃v,π respectively by the projector Π : (κ, ζ) ∈ Γ → ζ ∈ Γ .

The Phase Integrals, the Action Integrals
and the Tunneling Coefficients

Let ν ∈ {0, π}. To the loop γν , we associate the phase integral Φν defined as

Φν(E) =
1
2

∮

γ̃ν

κ dζ , (9)

where κ is a branch of the complex momentum that is continuous on γ̃ν . The
function E �→ Φν(E) is real analytic and does not vanish on J . The loop γ̃ν
is oriented so that Φν(E) be positive. One shows that, for all E ∈ J ,

Φ′
0(E) < 0 and Φ′

π(E) > 0 . (10)

To the loop γv,ν , we associate the vertical action integral Sv,ν defined as

Sv,ν(E) = − i

2

∮

γ̃v,ν

κdζ , (11)
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where κ is a branch of the complex momentum that is continuous on γ̃v,ν .
The function E �→ Sv,ν(E) is real analytic and does not vanish on J . The
loop γ̃v,ν is oriented so that Sv,ν(E) be positive.

The vertical tunneling coefficient is defined to be

tv,ν(E) = exp
(

−1
ε
Sv,ν(E)

)

. (12)

The index ν being chosen as above, we define horizontal action integral Sh,ν
by

Sh,ν(E) = − i

2

∮

γ̃h,ν

κ(ζ) dζ , (13)

where κ is a branch of the complex momentum that is continuous on γ̃h,ν .
The function E �→ Sh,ν(E) is real analytic and does not vanish on J . The
loop γ̃h,ν is oriented so that Sh,ν(E) be positive.

The horizontal tunneling coefficient is defined as

th,ν(E) = exp
(

−1
ε
Sh,ν(E)

)

. (14)

As the cosine is even, one has

Sh,0(E) = Sh,π(E) and th,0(E) = th,π(E) . (15)

Finally, one defines

Sh(E) = Sh,0(E) + Sh,π(E) and th(E) = th,0(E) · th,π(E) . (16)

In (9), (11), and (13), only the sign of the integral depends on the choice of
the branch of κ; this sign was fixed by orienting the integration contour.

2.4 Ergodic Family

Before discussing the spectral properties of Hz,ε, we recall some general re-
sults from the spectral theory of ergodic operators.

As 2π/ε is supposed to be irrational, the operators defined by (1) form
an ergodic family (see [17]).

The ergodicity has the following consequences:

1. the spectrum of Hz,ε is almost surely independent of z ( [18]); in fact, in
the case of the quasi-periodic operators, it is independent of z ( [1]);

2. the absolutely continuous spectrum and the singular spectrum are almost
surely independent of z ( [18]); in fact, in the case of the quasi-periodic
operators, they are independent of z ( [15]);

3. for almost all z, the discret spectrum is empty ( [18]);
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4. the Lyapunov exponent exists for almost all z and is independent of z
( [18]); it is defined in the following way: let x �→ ψ(x) be the solution to
the Cauchy problem

Hz,εψ = Eψ, ψ|x=0 = 0, ψ′
|x=0 = 1 ,

the following limit (when it exists) defines the Lyapunov exponent:

Θ(E) = Θ(E, ε) := lim
x→+∞

log
(√

|ψ(x,E, z)|2 + |ψ′(x,E, z)|2
)

|x| .

5. the absolutely continuous spectrum is the essential closure of the set of
E where Θ(E) = 0 (the Ishii-Pastur-Kotani Theorem, see [18]);

6. the density of states exists for almost all z and is independent of z ( [18]);
it is defined in the following way: for L > 0, letHz,ε;L be the operatorHz,ε
restricted to the interval [−L,L] with the Dirichlet boundary conditions;
for E ∈ R; the following limit (when it exists) defines the density of
states:

Nε(E) := lim
L→+∞

#{ eigenvalues of Hz,ε;Lless then or equal toE}
2L

;

7. the density of states is non decreasing; the spectrum of Hz,ε is the set of
points of increase of the density of states.

2.5 A Coarse Description of the Location of the Spectrum in J

Henceforth, we assume that the assumptions (H) and (O) are satisfied and
that J is a compact interval satisfying (TIBM). We assume that

(T)
max
E∈J

max(Sh(E), Sv,0(E), Sv,π(E))

< 2π · min
E∈J

min(Imζ2n−2(E), Imζ2n+3(E)) .

Note that (T) is verified if the spectrum of H0 has two successive bands that
are sufficiently close to each other and sufficiently far away from the remainder
of the spectrum (this can be checked numerically on simple examples, see
Sect. 2.9).

Define
δ0 :=

1
2

inf
E∈J

min(Sh(E), Sv,0(E), Sv,π(E)) > 0 . (17)

To locate the spectrum roughly, we prove

Theorem 1 ( [6]). Fix E∗ ∈ J . For ε sufficiently small, there exists V∗ ⊂ C,
a neighborhood of E∗, and two real analytic functions E �→ Φ̌0(E, ε) and
E �→ Φ̌π(E, ε), defined on V∗ satisfying the uniform asymptotics
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Φ̌0(E, ε) = Φ0(E) + o(ε), Φ̌π(E, ε) = Φπ(E) + o(ε) when ε→ 0 , (18)

such that, if one defines two finite sequences of points in J∩V∗, say (E(l)
0 )l :=

(E(l)
0 (ε))l and (E(l′)

π )l′ := (E(l′)
π (ε))l′ , by

1
ε
Φ̌0(E

(l)
0 , ε) =

π

2
+πl and

1
ε
Φ̌π(E(l′)

π , ε) =
π

2
+πl′, (l, l′) ∈ N

2 , (19)

then, for all real z, the spectrum of Hz,ε in J ∩ V∗ is contained in the union
of the intervals

I
(l)
0 := E

(l)
0 + [−e−δ0/ε, e−δ0/ε] and I(l′)

π := E(l′)
π + [−e−δ0/ε , e−δ0/ε]

(20)
that is

σ(Hz,ε) ∩ J ∩ V∗ ⊂
(
⋃

l

I
(l)
0

)
⋃
(
⋃

l′

I(l′)
π

)

.

In the sequel, to alleviate the notations, we omit the reference to ε in the
functions Φ̌0 and Φ̌π.

By (10) and (18), there exists C > 0 such that, for ε sufficiently small,
the points defined in (19) satisfy

1
C
ε ≤ E

(l)
0 − E

(l−1)
0 ≤ Cε , (21)

1
C
ε ≤ E(l)

π − E(l−1)
π ≤ Cε . (22)

Moreover, for ν ∈ {0, π}, in the interval J ∩ V∗, the number of points E(l)
ν is

of order 1/ε.
In the sequel, we refer to the points E(l)

0 (resp. E(l)
π ), and, by extension,

to the intervals I(l)
0 (resp. I(l)

π ) attached to them, as of type 0 (resp. type π).
By (21) and (22), the intervals of type 0 (resp. π) are two by two disjoints;
any interval of type 0 (resp. π) intersects at most a single interval of type π
(resp. 0).

2.6 A Precise Description of the Spectrum

As pointed out in the introduction, the present paper deals with the resonant
case that is we consider two energies, say E(l)

0 et E(l′)
π , that satisfy

|E(l′)
π − E

(l)
0 | ≤ 2e−

δ0
ε . (23)

This means that the intervals I(l)
0 and I

(l′)
π intersect each other. Moreover,

by (21) and (22), these intervals stay at a distance at least C−1ε of all the
other intervals of the sequences defined in Theorem 1. We now describe the
spectrum of Hz,ε in the union I(l)

0 ∪ I(l′)
π .
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To simplify the exposition, we set

E0 := E
(l)
0 , Eπ := E(l′)

π , I0 := I
(l)
0 , and Iπ := I(l′)

π . (24)

In the resonant case, the primary parameter controlling the location and the
nature of the spectrum is

τ = 2

√

tv,0(Ē) tv,π(Ē)
th(Ē)

where Ē =
Eπ + E0

2
. (25)

As tunneling coefficients are exponentially small, one typically has either
τ � 1 or τ � 1. We will give a detailed analysis of these cases. More precisely,
we fix δ > 0 arbitrary and assume that either

∀E ∈ V∗ ∩ J, Sh(E) − Sv,0(E) − Sv,π(E) ≥ δ , (26)

or

∀E ∈ V∗ ∩ J, Sh(E) − Sv,0(E) − Sv,π(E) ≤ −δ . (27)

The case τ 0 1 is more complicated and satisfied by less energies. We discuss
it briefly later.

To describe our results, it is convenient to introduce the following “local
variables”

ξν(E) =
Φ̌′
ν(Ē)
ε

· E − Eν
tv,ν(Ē)

where ν ∈ {0, π} . (28)

When τ is Large

Let us now assume τ � 1. The location of the spectrum in I0∪Iπ is described
by

Theorem 2 ( [5]). Assume we are in the case of Theorem 1. Assume (26)
is satisfied. Then, there exist ε0 > 0 and a non-negative function ε �→ f(ε)
tending to zero as ε → 0 such that, for ε ∈ (0, ε0], the spectrum of Hz,ε in
I0 ∪ Iπ is located in two intervals Ǐ0 and Ǐπ defined by

Ǐ0 = {E ∈ I0 : |ξ0(E)| ≤ 1 + f(ε)} and Ǐπ = {E ∈ Iπ : |ξπ(E)| ≤ 1 + f(ε)}.

Let dNε(E) be the density of states measure of Hz,ε; then
∫

Ǐ0∪Ǐπ
dNε(E) =

ε

π
.

Moreover, if Ǐ0 ∩ Ǐπ = ∅, then
∫

Ǐ0

dNε(E) =
∫

Ǐπ

dNε(E) =
ε

2π
(29)

The Lyapunov exponent on Ǐ0 ∪ Ǐπ satisfies

Θ(E, ε) =
ε

π
log
(

τ
√

1 + |ξ0(E)| + |ξπ(E)|
)

+ o(1) , (30)

where o(1) → 0 when ε→ 0 uniformly in E, E0 and Eπ.
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By (29), if Ǐ0 and Ǐπ are disjoint, they both contain spectrum of Hz,ε; if not,
one only knows that their union contains spectrum.

Let us analyze the results of Theorem 2.
The location of the spectrum. By (28), the intervals Ǐ0 and Ǐπ defined in

Theorem 2 are respectively “centered” at the points E0 and Eπ. Their lengths
are given by

|Ǐ0| ∼
ε→0

2 ε
|Φ̌′

0(E0)|
· tv,0(E0) and |Ǐπ| ∼

ε→0

2 ε
|Φ̌′
π(Eπ)|

· tv,π(Eπ) .

Depending on |Eπ − E0|, the picture of the spectrum in I0 ∪ Iπ is given by
Fig. 5, case (a) and (b).

The repulsion effect observed in the non resonant case (see [6]) does not
exist here: it is negligible with respect to the length of the intervals Ǐ0 and
Ǐπ.

∼ 2tv,0(E
(l)
0 ) ∼ 2tv,π(E(l )

π )

E
(l)
0 E

(l)
π

(a) |Eπ − E0 max(tv↪π↪ tv↪0)

∼ 2tv,π(E(l )
π )

E
(l)
0 E

(l)
π

(b) |Eπ − E0 max(tv,π, tv,0)

∼ 2tv,π(E(l′)
π )

E
(l)
0 E

(l)
π

Fig. 5. The location of the spectrum for τ large

The nature of the spectrum. In the intervals Ǐ0 and Ǐπ, according to (26)
and (30), the Lyapunov exponent is positive. Hence, by the Ishii-Pastur-
Kotani Theorem ( [17]), in both Ǐ0 and Ǐπ, the spectrum of Hz,ε is singular.

The Lyapunov exponent Θ(E, ε) on the spectrum. The general formula (30)
can be simplified in the following way:

Θ(E, ε) =
ε

π
log
(

τ
√

1 + |ξ0(E)|
)

+ o(1) when E ∈ Ǐπ ,

and

Θ(E, ε) =
ε

π
log
(

τ
√

1 + |ξπ(E)|
)

+ o(1) when E ∈ Ǐ0 .

If |Eπ −E0| � max(tv,π, tv,0), then the Lyapunov exponent stays essentially
constant on each of the intervals Ǐ0 and Ǐπ. On the other hand, if |Eπ−E0| �
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max(tv,π, tv,0), then, on these exponentially small intervals, the Lyapunov
exponent may vary by a constant. To see this, let us take a simple example.
Assume that tv,0 � tv,π, more precisely, that there exists δ > 0 such that

∀E ∈ V∗ ∩ J, Sv,0(E) > Sv,π(E) + δ .

If E0 and Eπ coincide, then Ǐ0 ⊂ Ǐπ, and, near the center of Ǐπ, the Lyapunov
exponent assumes the value

Θ(E, ε) =
ε

π
log τ + o(1) =

1
2π
(
Sh(Ē) − Sv,π(Ē) − Sv,0(Ē)

)
+ o(1) .

Near the edges of Ǐπ, its value is given by

Θ(E, ε) =
ε

π
log τ +

ε

2π
log(tv,π(Ē)/tv,0(Ē)) + o(1)

=
1
2π
(
Sh(Ē) − 2Sv,π(Ē)

)
+ o(1) .

So the variation of the Lyapunov exponent is given by 1
2π (Sv,0(Ē)−Sv,π(Ē))

on an exponentially small interval. One sees a sharp drop of the Lyapunov
exponent on the interval containing spectrum when going from the edges of
Ǐπ towards Eπ.

When τ is Small

We now assume that τ � 1, i.e., that (27) is satisfied. Then, the spectral
behavior depends on the value of the quantity Λn(V ) defined in [5]. We only
recall that Λn(V ) depends solely on V and on the index of the gap separating
the two interacting bands; moreover, it generically satisfies

Λn(V ) > 1 . (31)

Below, we only consider this generic case.
There are different possible “scenarii” for the spectral behavior when τ �

1. Before describing them in detail, we start with a general description of the
spectrum. We prove

Theorem 3 ( [5]). Assume we are in the case of Theorem 1. Assume
that (27) and (31) are satisfied. Then, there exists ε0 > 0 and a non negative
function ε �→ f(ε) tending to zero when ε → 0 such that, for ε ∈]0, ε0[, the
spectrum of Hz,ε in I

(l)
0 ∪ I(l′)

π is contained in Σ(ε), the set of energies E
satisfying
∣
∣τ2ξ0(E)ξπ(E) + 2Λn(V )

∣
∣ ≤

(
2 + τ2|ξ0(E)| + τ2|ξπ(E)|

)
(1 + f(ε)) . (32)

The set Σ(ε) is the union of two disjoint compact intervals, say I0 and Iπ;
both intervals are strictly contained inside the (2e−δ0/ε)-neighborhood of Ē.
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One checks the

Theorem 4 ( [5]). In the case of Theorem 1, if dNε(E) denotes the density
of states measure of Hz,ε, then

∫

I0

dNε(E) =
∫

Iπ

dNε(E) =
ε

2π
.

Hence, each of the intervals I0 and Iπ contains some spectrum of Hz,ε. This
implies that, when τ � 1 and Λn(V ) > 1, there is a “level repulsion” or a
“splitting” of resonant intervals.

As for the nature of the spectrum, one shows the following results. The
behavior of the Lyapunov exponent is given by

Theorem 5 ( [5]). In the case of Theorem 1, on the set Σ(ε), the Lyapunov
exponent of Hz,ε satisfies

Θ(E, ε) =
ε

2π
log
(
τ2(|ξ0(E)| + |ξπ(E)|) + 1

)
+ o(1) , (33)

where o(1) → 0 when ε→ 0 uniformly in E, E0 and Eπ.

For c > 0, one defines the set

I+
c =

{

E ∈ Σ(ε) : ε log
(

τ
√

|ξ0(E)| + |ξπ(E)|
)

> c
}

. (34)

Theorem 5 and the Ishii-Pastur-Kotani Theorem imply
Corollany 1. [5] In the case of Theorem 1, for ε sufficiently small, the set
Σ(ε) ∩ I+

c only contains singular spectrum.
Define

I−c =
{

E ∈ Σ(ε) : ε log
(

τ
√

|ξ0(E)| + |ξπ(E)|
)

< −c
}

. (35)

Theorem 3 implies that, for sufficiently small ε, the set I−c is contained in
the set

Σ̃ac(ε) = {E ∈ R :
∣
∣τ2ξ0(E)ξπ(E) + 2Λn(V )

∣
∣ ≤ 2(1 + g(ε))} , (36)

where ε �→ g(ε) is independent of c and satisfies the estimate g = o(1) as
ε → 0. The set Σ̃ac(ε) consists of Ĩ0 and Ĩπ, two disjoint intervals, and the
distance between these intervals is greater or equal to C ε

√
th(Ē).

Let Σac denote the absolutely continuous spectrum of Hz,ε. One shows

Theorem 6 ( [5]). Pick ν ∈ {0, π}. In the case of Theorem 1, there exists
η > 0 and D ⊂ (0, 1), a set of Diophantine numbers such that

–
mes (D ∩ (0, ε))

ε
= 1 + o

(

e−η/ε
)

when ε→ 0 .

– for ε ∈ D sufficiently small, if I−c ∩ Ĩν �= ∅, then

mes (Ĩν ∩Σac) = mes (Iν) (1 + o(1)) ,

where o(1) → 0 when ε→ 0 uniformly in E0 and Eπ.
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Possible Scenarii When τ is Small

Assume that τ � 1 and Λn(V ) > 1. Essentially, there are two possible cases
for the location and the nature of the spectrum of Hz,ε. Define

ρ :=
max(tv,π, tv,0)√

th

∣
∣
∣
∣
E=Ē

= τ

√

max(tv,π, tv,0)
min(tv,π, tv,0)

∣
∣
∣
∣
∣
E=Ē

. (37)

Note that ρ ≥ τ . We only discuss the cases when ρ is exponentially small or
exponentially large.
1. We now discuss the case ρ � 1. If |Eπ − E0| � ε

√
th(Ē), Σ(ε) is the

union of two intervals of length roughly ε
√
th ; they are separated by a gap

of length roughly ε
√
th (see Fig. 6); this gap is centered the point Ē. The

length of the intervals containing spectrum, as well as the length and center
of the lacuna essentially do not change as the distance Eπ−E0 increases upto
a size of order ε

√
th(Ē); after that, the intervals containing spectrum begin

to move away from each other.

ε
√
thε

√
th ε

√
th

E0 Eπ

Fig. 6. When ρ 
 1

As for the nature of the spectrum, when ρ is exponentially small and when
|Eπ−E0| � ε

√
th(Ē), the intervals containing spectrum are contained in the

set I−c ; so, most of the spectrum in these intervals is absolutely continuous
(if ε satisfies the Diophantine condition of Theorem 6).
2. Consider the case ρ� 1. For sake of definiteness, assume that tv,0 � tv,π.
Then, there exists an interval, say Iπ, that is asymptotically centered at Eπ
and that contains spectrum. The length of this interval is of order εtv,π(Ē).

One can distiguish two cases:

1. if E0 belongs to Iπ and if the distance from E0 to the edges of Iπ is
of the same order of magnitude as the length of Iπ, then Σ(ε) consists
of the interval Iπ without a “gap” of length roughly εth(Ē)/tv,π(Ē) and
containing E0 (see Fig. 7(b)). Moreover, the distance from E0 to any edge
of the gap is also of order εth(Ē)/tv,π(Ē).

2. if E0 is outside Iπ and at a distance from Iπ at least of the same order
of magnitude as the length of Iπ, then Σ(ε) consists in the union of
Iπ and an interval I0 (see Fig. 7(a)). The interval I0 is contained in
neighborhood of E0 of size roughly ε2th(Ē)/|E0 − Eπ|. The length of I0
is of size ε2th(Ē)/|E0 − Eπ| + εtv,0(Ē).
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0 εtv,π

0 ε(th/|E0 −Eπ| + tv,0)

E0 Eπ

εtv,π

ε(th/|E0 −Eπ| + tv,0)

E0 Eπ

(a) When |Eπ −E0 εtv,π(Ē)

∼ εtv,πε
th
tv,π

E0 Eπ

(b) When |Eπ −E0 εtv,π(Ē)

Fig. 7. The locus of the spectrum when τ 
 1 and ρ � 1

When ρ is exponentially large, the Lyapunov exponent may vary very quickly
on the intervals containing spectrum. Consider the case |Eπ−E0| � εtv,π(Ē).
For E close to the gap surrounding E0, τ2ξ0(E) is of order 1 whereas τ2ξπ(E)
is exponentially small. Hence, Theorem 5 implies that Θ(E, ε) = o(1). On
the other hand, at the external edges of the intervals containing spectrum,
τ2ξ0(E) is of size roughly ρ2; this factor being exponentially large, at such
energies, the Lyapunov exponent is positive and given by

Θ(E, ε) =
ε

π
log ρ+ o(1) .

This phenomenon is similar to that observed for τ � 1 except that, now,
the Lyapunov exponent sharply drops to a value that is small and that may
even vanish. On most of Σ(ε), the Lyapunov exponent stays positive and,
the spectrum is singular (by Corollary 1); near the lacuna surrounding E0,
neither Corollary 1, nor Theorem 6 apply. These zones are similar to the
zones where asymptotic Anderson transitions were found in [10].

2.7 The Model Equation

To obtain the results described in Sect. 2.5 and 2.6, the study of the spectrum
of Hz,ε is reduced to the study of the finite difference equation:

Ψk+1 = M(kh+ z,E)Ψk, Ψk ∈ C
2, k ∈ Z , (38)

where h = 2π
ε mod 1, and (z,E) → M(z,E) is a function taking values in

SL(2,C) (the monodromy matrix, see [10]). The behavior of the solutions
to (38) mimics that of those to Hz,εψ = Eψ (see [10]). Equation (38) in
which the matrix is replaced with its principal term is a model equation of
our system. All the effects we have described can be seen when analyzing this
model equation.
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The asymptotic ofM is decribed very precisely in [5,6]; here, we only write
down its leading term. Assume additionally that τ2(Ē) ≥ min

ν∈{0,π}
tv,ν(Ē).

Then, for E ∈ I0 ∪ Iπ, M has a quite simple asymptotic

M(z,E) ∼M0(z,E) :=





τ2g0(z + h/2)gπ(z) + θ−1
n τg0(z + h/2)

θnτgπ(z) θn



 ,

(39)
where

gν = ξν + sin(2πz), ν ∈ {0, π} ,

and θn is the solution of 2Λn = θn + θ−1
n in [1,+∞[.

Introducing the monodromy matrix for the Harper equation (see [2])

Nν(z) =
(
τgν(z) −1

1 0

)

,

one notes that
M0(z,E) = N0(z + h/2, E)Nπ(z,E) .

So as suggested by the phase space picture, Fig. 2, at the energies under
consideration, the system behaves like two interacting Harper equations.

2.8 When τ is of Order 1

When τ is of order 1, the principal term of the monodromy matrix asymp-
totics given by (39). If τ and |ξ0| and |ξπ| are of order of 1, the principal
term does not contain any asymptotic parameter. This regime is similar to
that of the asymptotic Anderson transitions found in [10]. If at least one of
the “local variables” ξν(E) becomes large, then, the spectrum can again be
analyzed with the same precision as in the cases τ � 1 and τ � 1.

2.9 Numerical Computations

We now turn to some numerical results showing that the multiple phenomena
described in Sect. 2.6 do occur.

All these phenomena only depend on the values of the actions Sh, Sv,0,
Sv,π. We pick V to be a two-gap potential; for such potentials, the Bloch
quasi-momentum k (see Sect. 2.1) is explicitly given by a hyper-elliptic
integral ( [14, 16]). The actions then become easily computable numeri-
cally. As the spectrum of H0 = −∆ + V only has two gaps, we write
σ(H0) = [E1, E2] ∪ [E3, E4] ∪ [E5,+∞). In the computations, we take the
values

E1 = 0, E2 = 3.8571, E3 = 6.8571, E4 = 12.1004, et E5 = 100.7092 .
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E = E3 − α

E = E2 + α

E = E1 + α

E = E4 − α

ρ 1

τ 1

ρ 1, τ 1

Fig. 8. Comparing τ and ρ to 1

On the Fig. 8, we represented the part of the (α,E)-plane where the condition
(TIBM) is satisfied for n = 1, say Λ. Its boundary consists of the straight
lines E = E1+α, E = E2+α, E = E3−α and E = E4−α. The computations
show that (T) is satisfied in the whole of ∆. As n = 1, one has E2n−2 = −∞.
It suffices to check (T) for ζ2n+3 = ζ5. (T) can then be understood as a
consequence of the fact that E5 − E4 is large.

On Fig. 8, we show the zones where τ and ρ are large and small. So,
for carefully chosen α, all the phenomena described in Sect. 2.6, that is in
Figs. 5, 6 and 7, do occur.
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Abstract. The aim of this lecture is to present the recent results obtained in col-
laboration with M. Klein and F. Nier on the low lying eigenvalues of the Laplacian
attached to the Dirichlet form :

C∞
0 (Ω) � v �→ h2

∫

Ω

|∇v(x)|2 e−2f(x)/h dx ,

where f is a C∞ Morse function on Ω and h > 0. We give in particular an optimal
asymptotics as h → 0 of the lowest strictly positive eigenvalue, which will hold
under generic assumptions. We discuss also some aspects of the proof.

1 Main Goals and Assumptions

We are interested in the low lying, actually exponentially small, eigenvalues
of the Dirichlet realization of the semiclassical Witten Laplacian on 0-forms

∆
(0)
f,h = −h2∆+ |∇f(x)|2 − h∆f(x) . (1)

This question appears quite naturally when analyzing the asymptotic behav-
ior as t→ +∞ of exp−t∆(0)

f,h.
We would like to describe the recent results concerning the lowest strictly

positive eigenvalue of this Laplacian. We will discuss briefly three cases :

– the case of R
n, which was analyzed by Bovier-Eckhoff-Gayrard-Klein [1],

Bovier-Gayrard-Klein [2], and by Helffer-Klein-Nier [6];
– the case of a compact riemannian manifold of dimension n ( [6]);
– The case of a bounded set Ω in R

n with regular boundary treated by
Helffer-Nier [8]) (in this case, we consider the Dirichlet realization of this
operator).

In all these contributions, the goal is to get the optimal accuracy asymptotic
formulas for the m0 first eigenvalues of the Dirichlet realization of ∆(0)

f,h.
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This question was already addressed a long time ago, via a probabilistic
approach, sometimes in relation with the problem of the simulated anneal-
ing. Here we would like to mention Freidlin-Wentcel [4], Holley-Kusuoka-
Strook [11], Miclo [14], Kolokoltsov [13], Bovier-Eckhoff-Gayrard-Klein [1]
and Bovier-Gayrard-Klein [2], but the proof, as mentioned for example in [13],
of the optimal accuracy (except may be for the case of dimension 1) was left
open.

The Witten Laplacian ∆(0)
f,h is associated to the Dirichlet form

C∞
0 (Ω) � u �→

∫

Ω

|(h∇ + ∇f)u(x)|2 dx .

Note that the probabilists look equivalently at:

C∞
0 (Ω) � v �→ h2

∫

Ω

|∇v(x)|2 e−2f(x)/h dx .

Let us now describe the main assumptions. In the whole paper, we assume
that:

Assumption 1 The function f is a C∞- function on Ω and a Morse func-
tion on Ω.

In the case when Ω = R
n, the operator defined on C∞

0 is essentially
selfadjoint in L2 and if

Assumption 2
lim inf
|x|→+∞

|∇f(x)|2 > 0 ,

and
|Dαxf | ≤ Cα(|∇f |2 + 1) ,

for |α| = 2,

is satisfied, Pearson’s theorem permits to prove that the bottom of the es-
sential spectrum is, for h small enough, strictly positive.

In the case with boundary, we will assume:

Assumption 3 The function f has no critical points at the boundary and
the function f/∂Ω is a Morse function on ∂Ω.

The last assumption, which appears to be generic, is more diffficult to
describe and will be presented in the next section.

2 Saddle Points and Labelling

The presentation of the results involves a right definition for the saddle points
(or critical points of index 1). If for a point in Ω, we take the usual definition



Witten Laplacians and Metastability 405

(the index at a critical point U being defined as the number of negative
eigenvalues of the Hessian of f at U), we shall say that a point U at the
boundary is a critical point of index 1 if U is a local minimum of f/∂Ω and
if the external normal derivative of f is strictly positive.

Our statements also involve a labelling of the local minima, which is
inspired by previous works by probabilists [1, 4, 14] and [2].

The existence of such a labelling is an assumption which is generically
satisfied. This discussion can be done in the three cases. Let us focus on the
case of a compact connected oriented Riemannian manifold Ω = Ω∪∂Ω with
boundary and that the function f satisfies Assumptions 1 and 3 and refer
to the original papers [6, 8] (and references therein) for the other cases or
for details. The set of critical points with index 1 is denoted by U (1) and its
cardinal by m1. For the definition of the saddle set (or set of saddle points),
we need some notations. For any A,B ⊂ Ω, H(A,B) denotes the least height
to be reached to go continuously from A to B. When A and B are closed
nonempty subsets of Ω, one can show that H(A,B) is a minimum. We next
need two definitions.

Definition 1. Let A and B be two closed subsets of Ω. We say that Z ⊂
Ω is a saddle set for (A,B) , if it is not empty and satisfies the following
conditions:

Z ⊂
(
U (1) ∩ f−1({H(A,B)})

)
,

{
C ∈ Conn

(
f−1((−∞,H(A,B)]) \ Z

)
, C ∩A �= ∅, C ∩B �= ∅

}
= ∅ .

Definition 2. Let A,B be closed nonempty disjoint subsets of Ω . The point
z ∈ U (1) is said to be a unique (one point)-saddle set2 for the pair (A,B) if

(∩C∈C(A,B)C) ∩
[

U (1) ∩ f−1(H(A,B))
]

= {z} ,

where C(A,B) denotes the set of closed connected sets C ⊂ f−1((−∞,H
(A,B)]) , such that C ∩A �= ∅ and C ∩B �= ∅ .

We now give the main assumption which ensures that each exponentially
small eigenvalue of ∆(0)

f,h is simple, with a different asymptotic behavior.

Assumption 4 There exists a labelling of the set of the local minima of f
in Ω, U (0) :=

{

U
(0)
1 , . . . , U

(0)
m0

}

, such that, by setting

C0 = ∂Ω and Ck =
{

U
(0)
k , . . . , U

(0)
1

}

∪ C0 , for k ≥ 1 ,

we have:

2Or more shortly, a unique saddle point,
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(i) For all k ∈ {1, . . . ,m0} , U (0)
k is the unique minimizer of

H(U, Ck \ {U}) − f(U), U ∈ Ck \ C0 .

(ii) For all k ∈ {1, . . . ,m0} , the pair
(

{U (0)
k }, Ck−1

)

admits a unique (one
point)-saddle set {z∗k} .

It is possible to check that this hypothesis is generically satisfied. More pre-
cisely, it is satisfied if all the critical values of f are distinct and all the
quantities f(U (1)) − f(U (0)), with U (1) ∈ U (1) and U (0) ∈ U (0) are distinct.

By its definition, the point z∗k is a critical point with index 1, z∗k ∈ U (1).

Definition 3. (The map j) If the critical points of index 1 are denoted by
U

(1)
j , j = 1, . . . ,m1, we define the application k → j(k) on {1, . . . ,m0} by:

U
(1)
j(k) = z∗k . (2)

With these definitions, one can prove :

Proposition 1. Under Assumption 4, the following properties are satisfied :
(a) The sequence

(

f(U (1)
j(k)) − f(U (0)

k )
)

k∈{1,...,m0}
is strictly decreasing.

(b) The application j : {1, . . . ,m0} → {1, . . . ,m1} is injective.

3 Rough Semi-Classical Analysis of Witten Laplacians
and Applications to Morse Theory

3.1 Previous Results

It is known (see [10,17,18] and more recently [3,8]) that the Witten Laplacian
on functions ∆(0)

f,h admits in the interval [0, h
6
5 ] and for h > 0 small enough

exactly m0 eigenvalues, where m0 is the number of local minima of f in Ω .
This is easy to guess by considering, near each of the local minima U (0)

j ,
of f the function

u
wkb,(0)
j (x) := χj(x) exp−

f(x) − f(U (0)
j )

h
, (3)

where χj is a suitable cut-off function localizing near U (0)
j as suitable qua-

simode. This shows, via the minimax principle, that these eigenvalues are
actually exponentially small as h→ 0 .

Note that we consider the Dirichlet problem. So the first part of Assump-
tion 3 implies that the eigenfunctions corresponding to low lying eigenvalues
are localized far from the boundary.
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3.2 Witten Laplacians on p-Forms

Although we are mainly interested in the operator ∆(0)
h,f , we will also meet

in the proof other Laplacians. The spectral analysis can be extended (see
Simon [17], Witten [18], Helffer-Sjöstrand [9], Chang-Liu [3]) to Laplacians
on p-forms, p ≥ 1. We recall that Witten is first introducing a dixtorted De
Rham complex d :

df,h = exp−f
h

(hd) exp
f

h
= hd+ df∧ , (4)

The restriction of df,h to p-forms is denoted by d(p)
f,h. Witten then associates

to this complex the Laplacian :

∆f,h = (df,h + d∗f,h)
2 , (5)

where d∗f,h is its L2-adjoint. By restriction to the p-forms, one gets the Witten

Laplacian ∆(p)
f,h.

3.3 Morse Inequalities

In the compact case, the analysis of the low lying eigenvalues of the Witten
Laplacians was the main point of the semi-classical proof suggested by Witten
of the Morse inequalities [10,17,18].

Each of the Witten Laplacians is essentially selfadjoint and an analy-
sis based on the harmonic approximation (consisting in replacing f by its
quadratic approximation at a critical point of f) shows that the dimension
of the eigenspace corresponding to [0, h

6
5 ] is, for h small enough, equal to mp

the number of critical points of index p.
Note that the dimension of the kernel of ∆(p)

h,f being equal to the Betti
number bp, this gives immediately the so called “ Weak Morse Inequalities” :

bp ≤ mp , for all p ∈ {0, . . . , n} . (6)

4 Main Result in the Case of R
n

In the case of R
n and under Assumptions 1, 2 and 4, the main result is the

following :

Theorem 5. The first eigenvalues λk(h), k ∈ {2, . . . ,m0}, of ∆(0)
f,h have the

following expansions :

λk(h) = h
π |λ̂1(U

(1)
j(k))|

√ ∣
∣
∣det(Hessf(U

(0)
k ))

∣
∣
∣

∣
∣
∣det(Hessf(U

(1)
j(k)))

∣
∣
∣

× exp− 2
h

(

f(U (1)
j(k)) − f(U (0)

k )
)

× (1 + r1(h)) ,

with r1(h) = o(1).
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Here the U (0)
k denote the local minima of f ordered in some specific way (see

Sect. 2), the U (1)
j(k) are “saddle points” (critical points of index 1), attached to

U
(0)
k via the map j, and λ̂1(U

(1)
j(k)) is the negative eigenvalue of Hessf(U (1)

j(k)).
Actually, the estimate

r1(h) = O(h
1
2 | log h|) ,

is obtained in [2] (under weaker assumptions on f) and the complete asymp-
totics,

r1(h) ∼
∑

j≥1

r1jh
j ,

is proved in [6].
In the above statement, we have left out the case k = 1, which leads to

a specific assumption (see Assumption 2) in the case of R
n for f at ∞. This

implies that∆(0)
f,h is essentially selfadjoint and that the bottom of the essential

spectrum is bounded below by some ε0 > 0 (independently of h ∈]0, h0], h0

small enough). If the function exp− fh is in L2, then

λ1(h) = 0 .

In this case, denoting by Π0 the orthogonal projector on exp− fh , the main
motivation for having a good control of λ2(h) is the estimate, for t > 0,

exp−t∆(0)
h,f −Π0||L(L2(Ω)) ≤ exp−tλ2(h) .

In other words, the estimate of λ2(h) permits to measure the rate of the
return to equilibrium.

Note finally that other examples like f(x) = −(x2 − 1)2 (with n = 1) are
interesting and an asymptotic of λ1(h) can be given for this example.

5 About the Proof in the Case of R
n

5.1 Preliminaries

The case of R
n requires some care (see [5,12] or [7]) for controlling the prob-

lem at infinity. The approach given in [6] intensively uses, together with the
techniques of [10], the two following facts :

– The Witten Laplacian is associated to a cohomology complex.
– The function exp− f(x)h is, as a distribution, in the kernel of the Witten

Laplacian on 0−forms.

This permits to construct very easily and efficiently – and this is specific
of the case of ∆(0)

f,h– quasimodes. We note that we have between differential
operators acting on C∞

0 the relations
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d
(0)
f,h∆

(0)
f,h = ∆

(1)
f,hd

(0)
f,h , (7)

and
∆

(0)
f,hd

(0),∗
f,h = d

(0),∗
f,h ∆

(1)
f,h , (8)

This shows in particular that if u is an eigenvector of ∆(0)
h,f for an eigenvalue

λ �= 0, then dh,fu is an eigenvector of ∆(1)
f,h for λ.

5.2 Witten Complex, Reduced Witten Complex

It is more convenient to consider the singular values of the restricted differ-
ential df,h : F (0) → F (1) . The space F (�) is the m�-dimensional spectral
subspace of ∆(�)

f,h, � ∈ {0, 1},

F (�) = Ran 1I(h)(∆
(�)
f,h) ,

with I(h) = [0, h
6
5 ] and the property

1I(h)(∆
(1)
f,h)df,h = df,h1I(h)(∆

(0)
f,h) .

We will analyze :
β

(�)
f,h := (d(�)

f,h)/F (�) .

We will mainly concentrate on the case � = 0.

5.3 Singular Values

In order to exploit all the information which can be extracted from well
chosen quasimodes, working with singular values sj of β(0)

f,h happens to be
more efficient than considering their squares, that is the eigenvalues λj = s2j of

∆
(0)
f,h . The main point3 is probably that one can choose suitable approximate

well localized “almost” orthogonal basis of F (0) and F (1) separately and
that the errors appear “multiplicatively” when computing the singular values
of β(0)

f,h. By this we mean :

sj = sappj (1 + ε1(h)) ,

instead of additively

λj := s2j = (sappj )2 + ε2(h) ,

as for example in [10]. Here sjapp will be explicitly obtained from the WKB
analysis. In the first case, it is actually enough to prove that ε1(h) = O(h∞).

3See also [15] for a pedagogical discussion,
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In the second case, the analysis of [10] gives a control of ε2(h) in O(exp−Sh ),
with S > 2 infj,k(f(U (1)

j ) − f(U (0)
k )), which is enough for estimating the

highest low lying eigenvalue (see [7]) but could be unsatisfactory for the
lowest strictly positive eigenvalue, as soon as the number of local minima is
> 2. Although it is not completely hopeless to have a better control of ε2(h)
by improving the analysis of [10] and introducing a refined notion of non
resonant wells, the approach developed in [8] appears to be simpler.

6 The Main Result in the Case with Boundary

In the case with boundary, the function exp− fh , which is the only distrib-
ution in the kernel of ∆(0)

h,f , does not satisfy the Dirichlet condition, so the
smallest eigenvalue can not be 0. The estimate of λ1(h) permits consequently
to measure the decay of || exp−t∆(0)

h,f || ≤ exp−tλ1(h) as t→ +∞.
For this case, a starting reference is the book by Freidlin-Wentzel [4],

which says (in particular) that, if f has a unique critical point, corresponding
to a non degenerate local minimum U

(0)
min, then the lowest eigenvalue λ1(h)

of the Dirichlet realization ∆(0)
f,h in Ω satisfies :

lim
h→0

−h log λ1(h) = 2 inf
x∈∂Ω

(f(x) − f(U (0)
min)) .

Other results are given in this book for the case of many local minima but
they are again limited to the determination of logarithmic equivalents.

We have explained in Sect. 2 that, under Assumption 4, one can label the
m0 local minima and associate via the map j from the set of the local minima
into the set of the m1 (generalized) saddle points of the Morse functions in
Ω of index 1 .

The main theorem of Helffer-Nier [8] is :

Theorem 6. Under Assumptions 1, 3 and 4, there exists h0 such that, for
h ∈ (0, h0] , the spectrum in [0, h

3
2 ) of the Dirichlet realization of ∆(0)

f,h in Ω,
consists of m0 eigenvalues λ1(h) < . . . < λm0(h) of multiplicity 1, which are
exponentially small and admit the following asymptotic expansions :

λk(h) = h
π |λ̂1(U

(1)
j(k))|

√ ∣
∣
∣det(Hessf(U

(0)
k ))

∣
∣
∣

∣
∣
∣det(Hessf(U

(1)
j(k)))

∣
∣
∣

(
1 + hc1k(h)

)

× exp− 2
h

(

f(U (1)
j(k)) − f(U (0)

k )
)

, if U (1)
j(k) ∈ Ω ,

and

λk(h) =
2h1/2|∇f(U(1)

j(k))|
π1/2

√ ∣
∣
∣det(Hessf(U

(0)
k ))

∣
∣
∣

∣
∣
∣det(Hessf

∣
∣
∂Ω

(U
(1)
j(k)))

∣
∣
∣

(
1 + hc1k(h)

)

× exp− 2
h

(

f(U (1)
j(k)) − f(U (0)

k )
)

, if U (1)
j(k) ∈ ∂Ω .
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Here c1k(h) admits a complete expansion :

c1k(h) ∼
∞∑

m=0

hmck,m .

This theorem extends to the case with boundary the previous results of [2]
and [6] (see also the books [4] and [13] and references therein).

7 About the Proof in the Case with Boundary

As in [10], the proof is deeply connected with the analysis of the small eigen-
values of a suitable realization (which is not the Dirichlet realization) of the
Laplacian on the 1-forms. In order to understand the strategy, three main
points have to be explained.

7.1 Define the Witten Complex and the Associate Laplacian

The case of a compact manifold without boundary was treated in the foun-
dational paper of Witten [18]. A finer (and rigorous) analysis is then given
in [10] and further developments appear in [6]. The case with boundary cre-
ates specific new problems.

Our starting problem being the analysis of the Dirichlet realization of the
Witten Laplacian on functions, we were let to find the right realization of the
Witten Laplacian on 1-forms in the case with boundary in order to extend
the commutation relation (7) in a suitable “strong” sense (at the level of the
selfadjoint realizations).

The answer was actually present in the literature [3] in connection with
the analysis of the relative cohomology and the proof of the Morse inequal-
ities. Let us explain how we can guess the right condition by looking at the
eigenvectors.

If u is eigenvector of the Dirichlet realization of ∆(0)
f,h, then by commu-

tation relation, d(0)
f,hu (which can be identically 0) should be an eigenvector

in the domain of the realization of ∆(1)
f,h. But d(0)

f,hu does not necessarily sat-
isfy the Dirichlet condition in all its components, but only in its tangential
components.

This is the natural condition that we keep in the definition of the varia-
tional domain to take for the quadratic form ω �→ ||d(1)

f,hω||2 + ||d(0) ∗
f,h ω||2.

The selfadjoint realization ∆
(1)DT
f,h obtained as the Friedrichs extension

associated to the quadratic form gives the right answer.
Observing also that d(0),∗

f,h (d(0)
f,hu) = λu (with λ �= 0), we get the second

natural (Neumann type)-boundary condition saying that a one form ω in the
domain of the operator ∆(1)DT

f,h should satisfy
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d
(0),∗
f,h ω/∂Ω = 0 . (9)

So we have shown that the natural boundary conditions for the Witten
Laplacians are (9) together with

ω/∂Ω = 0 . (10)

The associated cohomology is called relative (see for example [16]).

7.2 Rough Localization of the Spectrum
of this Laplacian on 1-Forms

The analysis of ∆(p)
f,h was performed in [3], in the spirit of Witten’s idea, ex-

tending the so called Harmonic approximation. But these authors, because
they were interested in the Morse theory, used the possibility to add sym-
plifying assumptions on f and the metric near the boundary. We empha-
size that [8] treats the general case. May be one could understand what
is going on at the boundary by analyzing the models corresponding to
f(x′, xn) = 1

2 |x′|2 + εxn, with ε = ±1 in R
n
+ = {xn > 0}. The analysis

in this case is easily reduced to the analysis of the one dimension case on
R

+ (together with the standard analysis of R
n−1). The Dirichlet Laplacian

to analyze is simply :

−h2 d
2

dx2
+ 1 ,

on R
+, which is strictly positive, but the Laplacian on 1-forms is

u(x) dx �→ (−h2u′′(x) + u(x)) dx ,

on R
+, but with the boundary condition :

hu′(0) − εu(0) = 0 .

Depending on the sign of ε, the bottom of the spectrum is 0 if ε < 0 or 1 if
ε > 0. This explains our definition of critical point of index 1 at the boundary.

7.3 Construction of WKB Solutions Attached
to the Critical Points of Index 1

The construction of the approximate basis of F (0) and F (1) is obtained
through WKB constructions. The constraints are quite different in the two
cases. For F (0), we need rather accurate quasimodes but can take advantage
of their simple structure given in (3). The difficulty is concentrated in the
choice of χj . For F (1), it is enough to construct quasimodes lecalized in a
small neighborhood of a critical point of index 1. This was done in [10] for
the case without boundary, as an extension of previous constructions of [9].
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The new point is the construction of WKB solutions near critical points of
the restriction of the Morse function at the boundary, which is done in [8] for
1-forms. Let us explain the main lines of the construction.

The construction is done locally around a local minimum U0 of f
∣
∣
∂Ω

with
∂nf(U0) > 0 . The function Φ is a local solution of the eikonal equation

|∇Φ|2 = |∇f |2 ,

which also satisfies
Φ = f on ∂Ω

and
∂nΦ = −∂nf on ∂Ω

and we normalize f so that f(U0) = f(0) = 0 .
We first consider a local solution uwkb0 near the point x = 0 of

e
Φ
h∆

(0)
f,hu

wkb
0 = O(h∞) ,

with uwkb0 in the form
uwkb0 = a(x, h)e−

Φ
h ,

a(x, h) ∼
∑

j≥0

aj(x)hj ,

and the condition at the boundary

a(x, h)e−
Φ
h = e−

f
h on ∂Ω ,

which leads to the condition

a(x, h)
∣
∣
∂Ω

= 1 .

In order to verify locally the boundary condition for our future uwkb1 , we
substract e−

f
h and still obtain

e
Φ
h ∆

(0)
f (uwkb0 − e−

f
h ) = O(h∞) . (11)

We now define the WKB solution uwkb1 by considering :

uwkb1 := df,hu
wkb
0 = df,h(uwkb0 − e−

f
h ) .

The 1-form uwkb1 = df,hu
wkb
0 satisfies locally the Dirichlet tangential condition

on the boundary (10) and, using (11), (modulo O(h∞)) the Neumann type
condition (9) is satisfied. So uwkb1 gives a good approximation for a ground
state of a suitable realization of ∆(1)

f,h in a neighborhood of this boundary
critical point.
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Mathematical Society), Vol. 26, pp. 41–86 (2004).

7. B. Helffer and F. Nier. Hypoellipticity and spectral theory for Fokker-Planck
operators and Witten Laplacians. Lecture Notes in Mathematics 1862, Springer
Verlag (2005).

8. B. Helffer and F. Nier. Quantitative analysis of metastability in reversible
diffusion processes via a Witten complex approach : the case with boundary.
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1 Introduction

In this review article we develop a basic part of the mathematical theory
involved in the description of a particle (classical and quantal) placed in the
Euclidean space R

N under the influence of a magnetic field B, emphasising
the structure of the family of observables.

The classical picture is known, see for example [21]; we present it here
for the convenience of the reader, in a form well-fitted for the passage to the
quantum counterpart. In doing this we shall emphasize a manifestly gauge
invariant Hamiltonian description [27] that is less used, although it presents
many technical advantages and a good starting point for quantization.

The main contribution concernes the quantum picture. Up to our knowl-
edge, until recently the single right attitude towards defining quantum ob-
servables when a nonconstant magnetic field is present can be found in a
remarkable old paper of Luttinger [14] (we thank Gh. Nenciu for pointing it
out to us); still this was undeveloped and with a limited degree of generality.

In recent years, the solution to this problem appeared in two related forms:
(1) a gauge covariant pseudodifferential calculus in [8,9,17,19] and (2) a C∗-
algebraic formalism in [16] and [19]. We cite here also the results in [22], where
a gauge independent perturbation theory is elaborated for the resolvent of a
magnetic Schrödinger Hamiltonian, starting from an observation in [3].

For the classical picture, we define a perturbed symplectic form on phase
space [27] and study the motions defined by classical Hamiltonians with re-
spect to the associated perturbed Poisson algebra. The usual magnetic mo-
menta appear then as momentum map for the associated ’symplectic trans-
lations’.

The quantum picture is treated in detail; two points of view are addopted:
The first is to preserve (essentially) the same set of functions as observables,
but with a different algebraic structure. The main input is a new, (B, �)-
dependent multiplication law associated to the perturbed symplectic form
defined for the classical theory. This new product converges in a suitable
sense to poinwise (classical) multiplication when � → 0. And it collapses
for B = 0 to the symbol multiplication of Weyl and Moyal, familiar from
pseudodifferential theory. It depends on no choice of a vector potential, so it

M. Măntoiu and R. Purice: The Mathematical Formalism of a Particle in a Magnetic Field,
Lect. Notes Phys. 690, 417–434 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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is explicitely gauge invariant. Asside the pseudodifferential form, we present
also a form comming from the theory of twisted crossed product C∗-algebras
and justified by interpreting our physical system as a dynamical system given
by an action twisted by the magnetic field.

The second point of view, more conventional, is in terms of self-adjoint
operators in some Hilbert space. One achieves this by representing the pre-
viously mentioned intrinsic structures, and this is done by choosing vector
potentials A generating the magnetic field B. For different but equivalent
choices one gets unitarily equivalent representations, a form of what is com-
munly called “gauge covariance”. The represented form is best-suited to the
interpretation in terms of magnetic canonical commutation relations. A func-
tional calculus is associated to this highly non-commutative family of oper-
ators. Actually, the twisted dynamical system mentioned above (a sort of
twisted imprimitivity system) is equivalent to these commutation rules.

The limit � → 0 of the quantum system was studied in [18], in the frame-
work of Rieffel’s strict deformation quantization.

To show that the formalism is useful in applications, we dedicate a sec-
tion to spectral theory for anisotropic magnetic operators, following [20].
This relies heavily on an affiliation result, saying that the resolvent family
of a magnetic Schrödinger Hamiltonian belongs to a suitable C∗-algebra of
magnetic pseudodifferential operators.

Recently, the usual pseudodifferential theory has been generalized to a
groupoid setting, cf. [13,23] and references therein; this is in agreement with
modern trends in deformation quantization, cf. [10] for example. The right
concept to include magnetic fields should be that of twisted groupoid, as ap-
pearing in [30], accompanied by the afferent C∗-algebras. Let us also mention
here the possibility to use our general framework in dealing with nonabelian
gauge theories.

2 The Classical Particle in a Magnetic Field

In this section we shall give a classical bakground for our quantum formalism.
We use the setting and ideas in [21] but develop the gauge invariant Poisson
algebra feature. We begin by very briefly recalling the usual Hamiltonian
formalism for classical motion in a magnetic field and then change the point
of view by perturbing the canonical symplectic structure.

2.1 Two Hamiltonian Formalisms

The basic fact provided by physical measurements is that the magnetic field
in R

3 may be described by a function B : R
3 → R

3 with divB = 0, such that
the motion R � t �→ q(t) ∈ R

3 of a classical particle (mass m and electric
charge e) is given by the equation of motion defined by the Lorentz force:
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mq̈(t) = eq̇(t) ×B(q(t)) (1)

where × is the antisymmetric vector product in R
3 and the point denotes

derivation with respect to time. An important fact about this equation of
motion is that it can be derived from a Hamilton function, the price to pay
being the necessity of a vector potential, i.e. a vector field A : R

3 → R
3 such

that B = rotA, that is unfortunately not uniquely determined.
Let us very briefly recall the essential facts concerning the Hamiltonian

formalism. Given a smooth manifold X we associate to it its “phase space”
defined as the cotangent bundle T

∗X on which we have a canonical symplectic
form, that we shall denote by σ. If we set Π : T[T∗X] → T

∗X and π̃ : T
∗X →

X the canonical projections and π̃∗ : T[T∗X] → TX the tangent map of π̃,
then σ := dβ where β(ξ) := [Π(ξ](π̃∗(ξ)), for ξ a smooth section in T[T∗X].
A Hamiltonian system is determined by a Hamilton function h : T

∗X → R

(supposed to be smooth) such that the vector field associated to the law of
motion of the system (R � t �→ x(t) ∈ T

∗X) is given by the following first
order differential equation ξ�σ − dh = 0, where ξ�σ is the one-form defined
by (ξ�σ)(η) := σ(ξ,η), for any η smooth section in T[T∗X].

Let us take X = R
3 such that all the above bundles are trivial and we

have canonical isomorphisms T
∗X ∼= X×X∗ (that we shall also denote by Ξ)

and T[T∗X] ∼= (X ×X∗) × (X ×X∗), defined by the usual transitive action
of translations on X; we can view any two sections ξ and η as functions
ξ(q, p) = (x(q, p), k(q, p)), η(q, p) = (y(q, p), l(q, p)) and we can easily verify
that σ(ξ,η) = k · y − l · x, with ξ · y the canonical pairing X∗ × X → R.
Moreover, the equations of motion defined by a Hamilton function h become:

{
q̇j = ∂h/∂pj ,
ṗj = −∂h/∂qj .

(2)

Then (1) may be written in the above form if one chooses a vector potential
A such that B = rotA and defines the Hamilton function

hA(q, p) := (2m)−1
3∑

j=1

(pj − eAj(q))2 .

Although very useful, this Hamiltonian description has the drawback of in-
volving the choice of a vector potential. Two different choices A and A′ have
to satisfy rot(A−A′) = 0. Since R

3 is simply connected, there exists a func-
tion ϕ : R

3 → R with A′ = A+∇ϕ and any such choice is admissible. We call
these changes of descriptions “gauge transformations”; the “gauge group” is
evidently C∞(X) and the action of the gauge group is given by hA → hA′ .

An interesting fact is that we can actually obtain an explicitely gauge
invariant description by using a perturbed symplectic form on T

∗X [27]. For
that it is important to notice that the magnetic field may in fact be described
as a 2-form (a field of antisymmetric bilinear functions on R

3), due to the
obvious isomorphism between R

3 and the space of antisymmetric matrices
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on R
3 (just take Bjk := εjklBl with εjkl the completely antisymetric tensor

of rank 3 on R
3). Thus from now on we shall consider the magnetic field

B given by a smooth section of the vector bundle Λ2X → X (the fibre at x
being T

∗
xX∧T

∗
xX

∼= [TxX∧TxX]∗). Due to the canonical global trivialisation
discussed above (defined by translations) we can view B as a smooth map
B : X → X∗ ∧ X∗ ∼= (X ∧ X)∗. Then a vector potential is described by a
1-form A : X → X∗ such that B = dA where d is the exterior differential.
This also allow us to consider the case X = R

N for any natural number N .
Any k-form on X may be considered as a k-form on T

∗X. Explicitely,
using the projection π̃ : T

∗X → X, we may canonically define the pull-
back π̃∗B of B and the “perturbed symplectic form” on T

∗X defined by the
magnetic field B as σB := σ + π̃∗B.

Now let us briefly recall the construction of the Poisson algebra associated
to a symplectic form. We start from the trivial fact that any nondegener-
ate bilinear form Σ on the vector space Ξ defines a canonical isomorphism
iΣ : Ξ → Ξ∗ by the equality [iΣ(x)](y) := Σ(x, y). Then we define the follow-
ing composition law on C∞(X): {f, g}B := σB(i−1

σB
(df), i−1

σB
(dg)), called the

Poisson braket. The case B = 0 gives evidently the canonical Poisson braket
{., .} on the cotangent bundle. A computation gives immediately

{f, g}B =
N∑

j=1

(
∂pj

f ∂qjg − ∂qjf ∂pj
g
)

+ e

N∑

j,k=1

Bjk(·) ∂pj
f ∂pk

g . (3)

For the usual Hamilton function of the free classical particle h(p) :=

(2m)−1
N∑

j=1

p2
j , we can write down the Poisson form of the equation of motion:






q̇j = {h, qj}B = 1
mpj ,

ṗj = −{h, pj}B = e
m

N∑

k=1

Bkj(q)pk,
(4)

that combine to the equation of motion (1) defined by the Lorentz force.
We remark finally that in the present formulation the Hamilton function of

the free particle h(q, p) = (2m)−1
∑
p2
j is no longer privileged; any Hamilton

function is now a candidate for a Hamiltonian system in a magnetic field just
by considering it on the phase space endowed with the magnetic symplectic
form. The relativistic kinetic energy h(p) := (p2 + m2)1/2 is a physically
interesting example.

Remark. The real linear space C∞(Ξ; R) endowed with the usual prod-
uct of functions and the magnetic Poisson braket {., .}B form a Pois-
son algebra (see [10, 18]), i.e. (C∞(Ξ; R), ·) is a real abelian algebra and
{., .}B : C∞(Ξ; R)×C∞(Ξ; R) → C∞(Ξ; R) is an antisymetric bilinear com-
position law that satisfies the Jacobi identity and is a derivation with respect
to the usual product.
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2.2 Magnetic Translations

For the perturbed symplectic form on T
∗X, the usual translations are no

longer symplectic. We intend to define “magnetic symplectic translations”
and compute the associated momentum map. Using the canonical global triv-
ialisation, we are thus looking for an action X � x �→ αx ∈ Diff(X × X∗)
having the form αx(q, p) = (q + x, p + τx(q, p)). A group action clearly im-
poses the 1-cocycle condition: τx+y(q, p) = τx(q, p) + τy(q + x, p + τx(q, p)).
The symplectic condition reads: (α−x)∗σB = σB . A simple computation gives
us for any (q, p) ∈ Ξ:

[α−x]
∗ =

(
1 0

[τ−x]
∗
X 1 + [τ−x]

∗
X∗

)∧2

: Λ2
(q,p)(Ξ) → Λ2

(q+x,p+τx(q,p))(Ξ) , (5)

where we identified all the cotangent fibres

T
∗
(q,p)Ξ

∼= T
∗
qX ⊕ T

∗
p(T

∗
qX) ∼= T

∗
qX ⊕ T

∗
pX

∗ (6)

[τ−x]
∗
X : T

∗X∗ → T
∗X, [τ−x]

∗
X∗ : T

∗X∗ → T
∗X∗ . (7)

Finally we obtain:
{
[α−x]

∗
σB − σB

}∣
∣
(q+x,p+τx(q,p))

= (8)

N∑

j,k=1

{[T−x(q, p)]jkdqj ∧ dqk + [S−x(q, p)]jkdqj ∧ dpk} ,

with (T x(q, p))jk =

= (∂/∂qj)(τx(q, p))k − (∂/∂qk)(τx(q, p))j + eB(q)jk − eB(q + x)jk , (9)

(Sx(q, p))jk = (∂/∂pj)(τx(q, p))k . (10)

Asking for αx to be symplectic implies that S = 0, hence τx does not depend
on p. If we fix a point q0 ∈ X we can define the function a(x) := τx(q0) ∈
X∗ and the condition imposed on τx(q) for having a group action leads to
τx(q + q0) = a(x+ q)− a(q). Chosing q0 = 0 and a vector potential A for B,
the first equation in (9) implies (τx(q)) := eA(q + x) − eA(q).

Let us compute the associate differential action. We set [(DA(q)) · x]j :=
∑

k[∂kAj(q)]xk and for x ∈ X we define the vector field in T(X ×X∗):

tx(q, p) := (∂/∂t) |t=0 α−tx(q, p) = (11)

= (−x, (∂/∂t) |t=0 τ−tx(q)) = (−x, e(DA(q)) · x) .
Let us find the associated momentum map. A computation using the de-
finition above (see also [18]) gives: [iσB

](x, l) = (l + ex�B,−x), where
(x�B)(y) := B(x, y). Then we obtain
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[iσB
](tBx )(q,p) = (e(DA(q)) · x− ex�B, x)(q,p) = (−d(eA(q) · x), x)(q,p),

with A(q) · x =
N∑

j=1

Aj(q)xj . It follows then that [iσB
](tBx ) = dγAx , where

γAx (q, p) := x · p − eA(q) · x and thus for any direction ν ∈ X (|ν| = 1) we
have defined the infinitesimal observable magnetic momentum along ν to be
γAν (q, p) := ν · (p− eA(q)). The momentum map ( [21]) is thus given by

µA : T
∗X → X∗, [µA(q, p)](x) := γAx (q, p) , (12)

i.e. µA(q, p) = p− eA(q).

3 The Quantum Picture

A guide in guessing a quantum multiplication for observables is the Weyl-
Moyal product of symbols, valid for B = 0 and underlying the Weyl form of
pseudodifferential theory. A replacement of σ by σB , as suggested by Sect. 2.1,
triggers a formalism which will be exposed in the following sections. Here
we examine a way to extend the multiplication, put it into a form suited
for dynamical systems and C∗-norms and study how unbounded observables
may be expressed by means of bounded ones.

3.1 The Magnetic Moyal Product

The well-known formula of symbol composition in the usual Weyl quantiza-
tion can be expressed in terms of the canonical symplectic form. Assume for
simplicity that f, g ∈ S(Ξ); then Weyl and Moyal proposed the multiplication

(f ◦� g)(ξ) = (2/�)2N
∫

Ξ

dη

∫

Ξ

dζ exp {−(2i/�)σ(η, ζ)} f(ξ − η)g(ξ − ζ),

where ξ = (q, p), η = (y, k), ζ = (z, l). By a simple calculation, one gets

(f ◦� g)(ξ) = (2/�)2N
∫

Ξ

dη

∫

Ξ

dζ exp






−(i/�)
∫

T (ξ,η,ζ)

σ






f(ξ − η)g(ξ − ζ),

in terms of the flux of σ through the triangle in phase space

T (ξ, η, ζ) :=< (q−y−z, p−k− l), (q+y−z, p+k− l), (q+z−y, p+ l−k) > .

A magnetic field B is turned on, with components supposed of class C∞
pol(X),

i.e. indefinitely derivable and each derivative polynomially bounded. Taking
into account the formalism of Sect. 2.1, it is natural to replace σ by σB:
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(f ◦�

B g)(ξ) = (2/�)2N
∫

Ξ

dη

∫

Ξ

dζ exp






−(i/�)
∫

T (ξ,η,ζ)

σB






f(ξ−η)g(ξ−ζ) .

(13)
This leads readily to the formula.

(f ◦�

B g)(ξ) = (14)

= (2/�)2N
∫

Ξ

dη

∫

Ξ

dζ e−(2i/�)σ(η,ζ) exp






−(i/�)
∫

T (q,y,z)

B






f(ξ−η)g(ξ−ζ) ,

where the triangle T (q, y, z) :=< q − y − z, q + y − z, q + z − y > is the
projection of T (ξ, η, ζ) on the configuration space. We call the composition
law ◦�

B : S(Ξ)×S(Ξ) → S(Ξ) the magnetic Moyal product. It is well-defined,
associative, non-commutative and satisfies f ◦�

B g = g ◦�

B f . It offers a way to
compose observables in a quantum theory of a particle placed in the magnetic
field. It is expressed only in terms of B; no vector potential is needed.

3.2 The Magnetic Moyal Algebra

The ∗-algebra S(Ξ) is much too small for most of the applications. Extensions
by absolutely convergent integrals still give rather poor results. One method
to get much larger algebras (classes of Hörmander symbols) is by oscillatory
integrals. This requires somewhat restricted conditions on the magnetic field,
but leads to a powerful filtred symbolic calculus that we intend to develop in
a forthcoming paper. Here we indicate an approach by duality.

So let us keep the mild assumption that the components of the magnetic
field are C∞

pol(X)-functions. The duality approach is based on the observation
[17, Lem. 14] : For any f, g in the Schwartz space S(Ξ), we have
∫

Ξ

dξ (f ◦�

B g)(ξ) =
∫

Ξ

dξ (g ◦�

B f)(ξ) =
∫

Ξ

dξ f(ξ)g(ξ) = 〈f, g〉 ≡ (f, g) .

As a consequence, if f, g and h belong to S(Ξ), the equalities (f ◦�

B g, h) =
(f, g ◦�

B h) = (g, h ◦�

B f) hold. This suggests

Definition 1. For any distribution F ∈ S ′(Ξ) and any function f ∈ S(Ξ)
we define

(F ◦�

B f, h) := (F, f ◦�

B h), (f ◦�

B F, h) := (F, h ◦�

B f) for all h ∈ S(Ξ) .

The expressions F ◦�

B f and f ◦�

B F are a priori tempered distributions.
The Moyal algebra is precisely the set of elements of S ′(Ξ) that preserves
regularity by composition.
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Definition 2. The Moyal algebra M(Ξ) ≡ M�

B(Ξ) is defined by

M(Ξ) :=
{
F ∈ S ′(Ξ) | F◦�

Bf ∈ S(Ξ) and f◦�

BF ∈ S(Ξ) for all f ∈ S(Ξ)
}
.

For two distributions F and G in M(Ξ), the Moyal product is extended by
(F ◦�

B G,h) := (F,G ◦�

B h) for all h ∈ S(Ξ).
The set M(Ξ) with this composition law and the complex conjugation

F �→ F is a unital ∗-algebra. Actually, this extension by duality also gives
compositions M(Ξ) ◦�

B S ′(Ξ) ⊂ S ′(Ξ) and S ′(Ξ) ◦�

BM(Ξ) ⊂ S ′(Ξ). An im-
portant result [17, Prop. 23] concerning the Moyal algebra is that it contains
C∞

pol,u(Ξ), the space of infinitely derivable complex functions on Ξ having
polynomial growth at infinity uniformly for all the derivatives.

This duality strategy is often substantiated in calculations by regulariza-
tion techniques. Further properties of ◦�

B and M(Ξ) can be found in [17].

3.3 The Twisted Crossed Product

One thing missing in the pseudodifferential setting is a “good norm” on suit-
able subclasses of M(Ξ). We can introduce some useful norms after a partial
Fourier transformation 1 ⊗ F : S(Ξ) ≡ S(X × X") → S(X × X). Setting
(1 ⊗F)(f ◦�

B g) =: [(1 ⊗F)f ] 1�

B [(1 ⊗F)f ], one gets for ϕ = (1 ⊗F)f, ψ =
(1 ⊗F)g in S(X ×X) the multiplication law

(
ϕ 1�

B ψ
)
(q;x) := (15)

∫

X

dy ϕ

(

q − �

2
(x− y); y)

)

ψ

(

q +
�

2
y;x− y

)

e−(i/�)Φ�

B(q,x,y)

where Φ�

B(q, x, y) is the flux of B through the triangle defined by the points
q− �

2x, q−
�

2x+�y and q+ �

2x. The partial Fourier transformation also converts
the complex conjugation f �→ f into the involution ϕ �→ ϕ�, with ϕ�(q;x) :=
ϕ(q;−x). Thus one gets a new ∗-algebra

(
S(X ×X), 1�

B ,
�), isomorphic with

the previous one. This also can be extended in various ways; in particular,
there are Moyal type algebras M(X ×X) ≡ M�

B(X ×X) in this setting too.
But it is important to note that (15) is just a particular instance of a general
mathematical object, the twisted crossed product. We give here the main ideas
and refer to [25] and [26] for the full theory and to [16] and especially [19]
for a comprehensive treatment of its relevance to quantum magnetic fields.

Let A be a unital C∗-algebra composed of bounded, uniformly contin-
uous functions on X; this algebra is supposed to contain the “admissible”
potentials. The idea behind this algebra is that for many problems it is more
adequate to consider the whole algebra generated by a potential function and
its translations. We shall always assume that A contains the constant func-
tions as well as the ideal C0(X) := {a : X → C | f is continuous and a(x) →
0 for x → ∞} (in fact this hypothesis is not necessary everywhere) and is
stable by translations, i.e. θ�

x(a) := a(· + �x) ∈ A for all a ∈ A and x ∈ X.



The Mathematical Formalism of a Particle in a Magnetic Field 425

Such a C∗-algebra will be called admissible. Thus, for any � �= 0, one can
define the continuous action of X by automorphisms of A:

θ� : X → Aut(A),
[
θ�

x(a)
]
(y) := a(y + �x) .

θ� is a group morphism and the maps X � x �→ θ�

x(a) ∈ A are all continuous.
We suppose B to have components Bjk in A and we define the map:

(q, x, y) �→ ω�

B(q;x, y) := e−(i/�)ΓB(<q,q+�x,q+�x+�y>) ,

where ΓB(< q, q+�x, q+�x+�y >) denotes the flux of the magnetic field B
through the triangle defined by the vertices q, q+�x, q+�x+�y inX. It can be
interpreted as a map ω�

B : X ×X → C(X; T),
[
ω�

B(x, y)
]
(q) := ω�

B(q;x, y)
with values in the set of continuous functions on X taking values in the 1-
torus T := {z ∈ C | |z| = 1}. It is easy to see by Stokes Theorem and the
equation dB = 0 that ω�

B satisfies the 2-cocycle condition

ω�

B(x, y)ω�

B(x+ y, z) = θ�

x

[
ω�

B(y, z)
]
ω�

B(x, y + z), ∀x, y, z ∈ X .

It is also normalized, i.e. ω�

B(x, 0) = 1 = ω�

B(0, x), ∀x ∈ X.
The quadruplet (A, θ�, ω�

B ,X) is a magnetic example of an abelian twisted
C∗-dynamical system (A, θ, ω,X). In the general case X is an abelian second
countable locally compact group, A is an abelian C∗-algebra, θ is a continuous
morphism from X to the group of automorphisms of A and ω is a continuous
2-cocycle with values in the group of all unitary elements of A.

Given any abelian twisted C∗-dynamical system, a natural C∗-algebra
can be defined. We recall its construction. Let L1(X;A) be the set of
Bochner integrable functions on X with values in A, with the L1-norm
‖ϕ‖1 :=

∫

X
dx ‖ϕ(x)‖A. For any ϕ,ψ ∈ L1(X;A) and x ∈ X, we define

the product

(ϕ 1 ψ)(x) :=
∫

X

dy θ y−x
2

[ϕ(y)] θ y
2
[ψ(x− y)] θ− x

2
[ω(y, x− y)]

and the involution φ�(x) := θ− x
2
[ω(x,−x)−1]φ(−x)∗. In this way, one gets a

Banach ∗-algebra.

Definition 3. The enveloping C∗-algebra of L1(X,A) is called the twisted
crossed product and is denoted by A�

ω
θ X. It is the completion of L1(X;A)

under the C∗-norm

‖ ϕ ‖:= sup{‖ π(ϕ) ‖B(�) | π : L1(X;A) → B(H) representation} .

It is easy to see that, with θ = θ�, ω = ω�

B , one gets exactly the structure

exposed above restricted to S(X ×X) ⊂ L1(X;A). The C∗-algebra A�
ω�

B

θ� X

will be denoted simply by C�

B(A). In the magnetic case ωhB(x,−x) = 1.
After a partial Fourier transformation we get the C∗-algebra B�

B(A) :=
(1 ⊗ F−1)C�

B(A), which is another extension of the ∗-subalgebra S(Ξ) en-
dowed with complex conjugation and the multiplication (14).
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3.4 Abstract Affiliation

When working with a self-adjoint operator H in a Hilbert space H, it might
be useful to know that the functional calculus of H (its resolvent for ex-
ample) belongs to some special C∗-algebra of B(H). Our representation-free
approach forces us to use an abstract version, borrowed from [1].

Definition 4. An observable affiliated to a C∗-algebra C is a morphism Φ :
C0(R) → C.

Recall that a function h ∈ C∞(X∗) is called an elliptic symbol of type
s ∈ R if (with 〈p〉 :=

√
1 + p2) |(∂αh)(p)| ≤ cα〈p〉s−|α| for all p ∈ X∗, α ∈

N
N and there exist R > 0 and c > 0 such that c 〈p〉s ≤ h(p) for all p ∈

X∗ and |p| ≥ R. Such a function is naturally contained in C∞
pol,u(Ξ), thus in

M(Ξ). For any z �∈ R, we also set rz : R → C by rz(t) := (t−z)−1. BC∞(X)
is the space of all functions in C∞(X) with bounded derivatives of any order.

Theorem 1. Assume that B is a magnetic field whose components belong
to A ∩ BC∞(X). Then each real elliptic symbol h of type s > 0 defines an
observable Φ�

B,h affiliated to B�

B(A), such that for any z �∈ R one has

(h − z) ◦�

B Φ
�

B,h(rz) = 1 = Φ�

B,h(rz) ◦�

B (h − z) . (16)

In fact one has Φ�

B,h(rz) ∈ (1 ⊗ F)
(
L1(X;A)

)
⊂ S ′(Ξ), so the compositions

can be interpreted as M(Ξ) × S ′(Ξ) → S ′(Ξ) and S ′(Ξ) ×M(Ξ) → S ′(Ξ).

The proof can be found in [20] and consists in starting with the usual
inverse for function multiplication and control the corrections using the L1-
norm in the algebra C�

B(A). This result is basic for our approach to spectral
analysis for Hamiltonians with magnetic fields in Sections 6.1 and 6.2. A
represented version will be found in Sect. 5.3.

4 The Limit � → 0

The quantum and classical descriptions we have given for a particle in a mag-
netic field, can be gathered into a common “continuous” structure indexed
by the Plank’ constant � ∈ [0, �0], by the procedure of strict deformation
quantization. Our strategy follows [10] and the details may be found in our
paper [18]. The main idea is to define for each value of � ∈ [0, �0] an algebra
of bounded observables and using a common dense subalgebra, to prove that
the family is in fact a continuous field of C∗-algebras (see [28,29]).

So far we have defined for � > 0 a C∗-algebra B�

B(A) describing the
observables of the quantum particle in a magnetic field B. Let us define now
for � = 0 the C∗-algebra B0

B(A) := C(X∗;A) with the usual commutative
product of functions (f ◦0

B g := fg) and the involution defined by complex



The Mathematical Formalism of a Particle in a Magnetic Field 427

conjugation. Setting A∞ := {a ∈ A ∩ C∞(X) | ∂αa ∈ A,∀α ∈ N
N} one

verifies that the linear space A := S(X∗;A) is closed for any Moyal product
◦�

B , also for � = 0. For � ∈ [0, �0] we denote by ‖.‖� the C∗-norm in B�

B(A).
Moreover let us remark that the real algebra A0 := {f ∈ A | f = f} is a

Poisson sub-algebra of C∞(Ξ; R) endowed with the magnetic Poisson braket
associated to the magnetic field B. It is easy to verify that one has the

• Completness condition: A = C ⊗ A0 is dense in each C∗-algebra B�

B(A).

The following convergences are proved by direct computation [18]:

• von Neumann condition: For f and g in A0 one has

lim
�→0

‖1
2
(
f ◦�

B g + g ◦�

B f
)
− fg‖� = 0 .

• Dirac condition: For f and g in A0 one has

lim
�→0

‖ 1
i�

(
f ◦�

B g − g ◦�

B f
)
− {f, g}B‖� = 0 .

An argument using a theorem in [24], concerning continuous fields of
twisted crossed-products, allows to prove the following continuity result [18]:

• Rieffel condition: For f ∈ A0 the map [0, �0] � � �→ ‖f‖� ∈ R is continuous.

Following [10,28,29] we say that we have a strict deformation quantization
of the Poisson algebra A0.

5 The Schrödinger Representation

A complete overview of the formalism is achieved only after representations
in Hilbert spaces are also outlined. This will put forward magnetic potentials,
but in a gauge covariant way. We obtain integrated forms of covariant repre-
sentations as well as the magnetic version of pseudodifferential operators. Un-
bounded pseudodifferential operators have their resolvents in well-controlled
C∗-algebras composed of bounded ones, as a consequence of Sect. 3.4; this is
basic to the spectral results of Sect. 6.

5.1 Representations of the Twisted Crossed Product

Fortunately, non-degenerate representations of twisted crossed product C∗-
algebras admit a complete classification. We recall that the representation
ρ : C → B(H) of the C∗-algebra C in the Hilbert space H is called non-
degenerate if ρ(C)H generates H. Since A�

ω
θ X was obtained from the twisted

C∗-dynamical system (A, θ, ω,X), one may expect that the representations
of A �

ω
θ X can be deduced from a certain kind of Hilbert representations of

the system (A, θ, ω,X).
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Definition 5. Given a twisted dynamical system (A, θ, ω,X), we call covari-
ant representation a Hilbert space H together with two maps r : A → B(H)
and U : X → U(H) satisfying:

• r is a non-degenerate representation,
• U is strongly continuous and U(x)U(y) = r[ω(x, y)]U(x+y) ∀x, y ∈ X,
• U(x)r(a)U(x)∗ = r[θx(a)], ∀x ∈ X, a ∈ A.

It can be shown that there is a one-to-one correspondence between co-
variant representations of (A, θ, ω,X) and non-degenerate representations of
A �

ω
θ X. The following evident statement will be needed.

Lemma 1. For (H, r, U) covariant representation of (A, θ, ω,X), the map
r � U defined on L1(X;A) by the formula

(r � U)ϕ :=
∫

X

dx r
[
θx/2

(
ϕ(x)

)]
U(x)

extends to a representation of A �
ω
θ X, called the integrated form of (r, U).

For our magnetic C∗-dynamical systems one constructs covariant repre-
sentations by choosing vector potentials. We shall call them and their inte-
grated forms Schrödinger representations, inspired by the case B = 0. For A
such that B = dA and for points x, y ∈ X, we define ΓA([x, y]) :=

∫

[x,y]
A

the circulation of A through the segment [x, y] := {sx+ (1− s)y | s ∈ [0, 1]}.
By Stokes Theorem we have

ΓB(< q, q + �x, q + �x+ �y >) =

= ΓA([q, q + �x])ΓA([q + �x, q + �x+ �y])ΓA([q + �x+ �y, q]) ,

leading to

ω�

B(q;x, y) = λ�

A(q;x)λ�

A(q + �x; y)
[
λ�

A(q;x+ y)
]−1

, (17)

where we set λ�

A(q;x) := exp {−(i/�)ΓA([q, q + �x])} . We define H :=
L2(X), r : A → B[L2(X)], r(a) :=the operator of multiplication by a ∈ A
and

[
U�

A(x)u
]
(q) := λ�

A(q;x)u(q + �x), ∀q, x ∈ X, ∀u ∈ L2(X) .

It follows easily that (H, r, U�

A) is a covariant representation of (A, θ�, ω�

B ,X).
The integrated form associated to (H, r, U�

A) is Rep
�

A ≡ r � U�

A : C�

B(A) →
B
[
L2(X)

]
, given explicitely on L1(X;A) by

[

Rep
�

A(ϕ)u
]

(x) = �
−N

∫

X

dy e(i/�)ΓA([x,y])ϕ

(
x+ y

2
,
y − x

�

)

u(y) . (18)
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5.2 Pseudodifferential Operators

Let us compose Rep
�

A with the partial Fourier transformation in order to get
a representation Op

�

A := Rep
�

A ◦ (1⊗F) : B�

B(A) → B(H). A calculation on
suitable subsets of B�

B(A) (on S(Ξ) for example) gives the explicit action
[

Op
�

A(f)u
]

(x) = (19)

= �
−N

∫

X

∫

X�

dy dk e(i/�)(x−y)·ke−(i/�)ΓA([x,y])f

(
x+ y

2
, k

)

u(y) .

We call Op
�

A(f) the magnetic pseudodifferential operator associated to the
symbol f. A posteriori, one may say that la raison d’être of the composition
(13) is to ensure the equality: Op

�

A(f)Op
�

A(g) = Op
�

A(f ◦�

B g). One also has
Op

�

A(f)∗ = Op
�

A(f). Some properties of Op
�

A can be found in [17] and [19].
Now it is easy to see what gauge covariance is at the level of the two

representations Rep
�

A and Op
�

A. If two 1-forms A and A′ are equivalent (A′ =
A+ dρ) then one will get unitarily equivalent representations:

Op
�

A′(f) = e(i/�)ρOp
�

A(f)e(−i/�)ρ and Rep
�

A′(ϕ) = e(i/�)ρRep
�

A(ϕ)e(−i/�)ρ .

We refer to [17] for a comparaison with a quantization procedure f �→
Op

�,A(f), combining (in an inappropriate order) the usual, non-magnetic
calculus with the minimal coupling rule (x, p) �→ (x, p − A(x)). It is not
gauge-covariant, so that it is not suitable as a real quantization procedure.

Finally let us quote a result linking M(Ξ) with Op
�

A [17, Prop. 21] :
For any vector potential A in C∞

pol(X), Op
A is an isomorphism of ∗-algebras

between M(Ξ) and L[S(X)] ∩ L[S ′(X)], where L[S(X)] and L[S ′(X)] are,
respectively, the spaces of linear continuous operators on S(X) and S ′(X).

5.3 A New Justification: Functional Calculus

We give here a new justification of our formalism. It is obvious that if one
gives some convincing reason for working with (19), then the remaining part
can be deduced as a necessary consequence, by reversing the arguments.

Let us accept that our quantum particle placed in a magnetic field is de-
scribed by the family of elementary operators Q1, . . . , QN ; (Π�

A)1, . . . , (Π�

A)N ,
where Qj is the operator of multiplication by xj and (Π�

A)j := P �

j − Aj =
−i�∂j − Aj is the j’th component of the magnetic momentum defined by a
vector potential A with dA = B (these may be considered as quantum observ-
ables associated to the position and the momentum map for the translation
group). Then Op

�

A should be a functional calculus f �→ Op
�

A(f) ≡ f(Q,Π�

A)
for this family of non-commuting self-adjoint operators. The scheme is: (i)
consider the commutation relations satisfied by Q,Π�

A, (ii) condense them
in a global, exponential form, (iii) define Op

�

A(f) by decomposing f as a
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continuous linear combination of exponentials. We mention that exactly this
argument leads to the usual Weyl calculus (B = 0).

So let us take into account the following commutation relations, easy to
check: i[Qj , Qk] = 0, i[Π�

A,j , Qk] = �δj,k, i[Π�

A,j , Π
�

A,k] = �Bkj(Q), ∀j, k =
1, . . . , N . A convenient global form may be given in terms of the magnetic
Weyl system. Recall the unitary group

(
eiQ·p)

p∈X� of the position as well

as the magnetic translations
(

U�

A(q) := eiq·Π
�

A

)

q∈X
, given explicitely in the

Hilbert space H := L2(X) by

U�

A(x) = e−(i/�)ΓA([Q,Q+�x])eix·P
�

, (20)

which is just another way to write (17). The family
(
U�

A(x)
)

x∈X satisfies

U�

A(x)U�

A(x′) = ω�

B(Q;x, x′)U�

A(x+ x′), x, x′ ∈ X ,

where we set ω�

B(q;x, x′) := e−(i/�)ΓB(<q,q+�x,q+�x+�x′>).
Now the magnetic Weyl system is the family

(
W �

A(q, p)
)

(q,p)∈Ξ of unitary
operators in H given by

W �

A(q, p) := e−iσ((q,p),(Q,Π
�

A)) = e−i(�/2)q·pe−iQ·pU�

A(x)

and it satisfies for all (q, p), (q′, p′) ∈ Ξ

W �

A(q, p)W �

A(q′, p′) = e(i/2)σ((q,p),(q
′,p′))ω�

B(Q; q, q′)W �

A(q + q′, p+ p′) .

To construct Op
�

A(f) ≡ f(Q,Π�

A)) one does not dispose of a spectral the-
orem. Having the functional calculus with a C0-group in mind, one proposes

Op
�

A(f) :=
∫

Ξ

dξ (FΞf) (ξ)W �

A(ξ) ,

where (FΞf) (ξ) :=
∫

Ξ
dη e−iσ(ξ,η)f(η) is the symplectic Fourier transform

(with a suitable Haar measure). Some simple replacements lead to (19). De-
tails concerning this construction may be found in [19] together with an
analysis of the role of the algebra A.

5.4 Concrete Affiliation

If H is a Hilbert space and C is a C∗-subalgebra of B(H), then a self-adjoint
operator H in H defines an observable ΦH affiliated to C if and only if ΦH(η) :=
η(H) belongs to C for all η ∈ C0(R). A sufficient condition is that (H−z)−1 ∈
C for some z ∈ C with Imz �= 0. Thus an observable affiliated to a C∗-algebra
is the abstract version of the functional calculus of a self-adjoint operator.
By combining Theorem 1 with the representations introduced above one gets
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Corollary 1. We are in the framework of Theorem 1. Let A be a con-
tinuous vector potential that generates B. Then Op

�

A(h) defines a self-
adjoint operator h(Π�

A) in H with domain given by the image of the operator
Op

�

A

[
(h − z)−1

]
(which do not depend on z /∈ R). This operator is affiliated

to Op
�

A

[
B�

B(A)
]

= Rep
�

A

[
B�

B(A)
]
.

6 Applications to Spectral Analysis

It seems to be common knowledge the fact that “the essential spectrum of
partial differential operators depend only on the behaviour at infinity of the
coefficients”. But precise and general results emerged quite recently; some
references are [1, 4–7, 11, 12], [15]. We review here a Theorem of [20] under
simplifying assumptions (a scalar potential V can be easily added). Compared
with the nice results of [7], it is much better if B (and V ) is bounded, but we
cannot say anything when B is unbounded towards infinity, case generously
treated in [7]. The theory is in terms of C∗-algebras, quasi-orbits of some
dynamical systems and asymptotic Hamiltonians associated to these quasi-
orbits. The same asymptotic Hamiltonians play a role in localisation results
(leading to non-propagation properties for the evolution group), extracted in
an abridged form from [20] and [2].

6.1 The Essential Spectrum

We give a description of the essential spectrum of observables affiliated to
the C∗-algebra B�

B(A). For the generalised magnetic Schrödinger operators
of Theorem 1, this is expressed in terms of the spectra of so-called asymptotic
operators. The affiliation criterion and the algebraic formalism introduced
above play an essential role in the proof of this result. We start by recalling
some definitions in relation with topological dynamical systems.

By Gelfand theory, the abelian C∗-algebra A is isomorphic to the C∗-
algebra C(SA), where SA is the spectrum of A. Since A was assumed unital
and contains C0(X), SA is a compactification ofX. We shall therefore identify
X with a dense open subset of SA. By stability under translations, the group
law θ : X × X → X extends then to a continuous map θ̃ : X × SA → SA.
Thus the complement FA of X in SA is closed and invariant; it is the space
of a compact topological dynamical system. For any x ∈ FA, let us call the
set {θ̃(x, x) | x ∈ X} the orbit generated by x, and its closure a quasi-orbit.
Usually there exist many elements of FA that generate the same quasi-orbit.
In the sequel, we shall often encounter the restriction a|F of an element
a ∈ A ≡ C(SA) to a quasi-orbit F . Naturally a|F is an element of C(F ), but
this algebra can be realized as a subalgebra of BCu(X). By a slight abuse of
notation, we shall identify a|F with a function defined on X, thus inducing
a multiplication operator in H.
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The calculation of the essential spectrum may be performed at an abstract
level, i.e. without using any representation, (see [20] where a potential V is
also included). We present, for convenience, a represented version.

Theorem 2. Let B be a magnetic field whose components belong to A ∩
BC∞(X). Assume that {Fν}ν is a covering of FA by quasi-orbits. Then for
each real elliptic symbol h of type s > 0, if A, Aν are continuous vector
potentials respectively for B, Bν ≡ BFν

, one has

σess

[
h(Π�

A)
]

=
⋃

ν

σ[h(Π�

Aν
)] . (21)

The operators h(Π�

Aν
) are the asymptotic operators mentioned earlier.

All the spectra in (21) are only depending on the respective magnetic fields.
Examples may be found in [20], see also [15]. Some related results may be
found in the recent paper [11].

6.2 A Non-Propagation Result

We finally describe, following [20], how the localization results proved in [2]
in the case of Schrödinger operators without magnetic field can be extended
to the situation where a magnetic field is present. Once again, the algebraic
formalism and the affiliation criterion introduced above play an essential role
in the proofs. For any quasi-orbit F , let NF be the family of sets of the form
W = W ∩X, where W is any element of a base of neighbourhoods of F in
SA. We write χW for the characteristic function of W .

Theorem 3. Let B be a magnetic field whose components belong to A ∩
BC∞(X) and let h be a real elliptic symbol of type s > 0. Assume that
F ⊂ FA is a quasi-orbit. Let A, AF be continuous vector potentials for B
and BF , respectively. If η ∈ C0(R) with supp (η) ∩ σ

[
h(Π�

AF
)
]

= ∅, then
for any ε > 0 there exists W ∈ NF such that

∥
∥χW (Q) η

[
h(Π�

A)
] ∥
∥ ≤ ε. In

particular, the following inequality holds uniformly in t ∈ R and u ∈ H:
∥
∥χW (Q)e−ith(Π�

A) η
[
h(Π�

A)
]
u
∥
∥ ≤ ε‖u‖ .

The last statement of this theorem gives a precise meaning to the notion of
non-propagation. We refer to [2] for physical explanations and interpretations
of this result as well as for some examples.
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Fractal Weyl Law for Open Chaotic Maps
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1 Introduction

We summarize our work in collaboration with Maciej Zworski [16], on the
semiclassical density of resonances for a quantum open system, in the case
when the associated classical dynamics is uniformly hyperbolic, and the set
of trapped trajectories is a fractal repeller. The system we consider is not a
Hamiltonian flow, but rather a “symplectic map with a hole” on a compact
phase space (the 2-torus). Such a map can be considered as a model for the
Poincaré section associated with a scattering Hamiltonian on R

2, at some
positive energy; the “hole” represents the points which never return to the
Poincaré section, that is, which are scattered to infinity. We then quantize
this open map, obtaining a sequence of subunitary operators, the eigenvalues
of which are interpreted as resonances.

We are especially interested in the asymptotic density of “long-living reso-
nances”, representing metastable states which decay in a time bounded away
from zero (as opposed to “short resonances”, associated with states decaying
instantaneously). Our results (both numerical and analytical) support the
conjectured fractal Weyl law, according to which the number of long-living
resonances scales as �

−d, where d is the (partial) fractal dimension of the
trapped set.

1.1 Generalities on Resonances

A Hamiltonian dynamical system (say, H(q, p) = p2 + V (q) on R
2n) is said

to be “closed” at the energy E when the energy surface ΣE is a compact
subset of the phase space. The associated quantum operator H� = −�

2∆ +
V (q) then admits discrete spectrum near the energy E (for small enough �).
Furthermore, if E is nondegenerate (meaning that the flow of H has no fixed
point on ΣE), then the semiclassical density of eigenvalues is given by the
celebrated Weyl’s law [11]:

# { Spec(H) ∩ [E − δ, E + δ] } =
1

(2π�)n

∫ ∫

|H(q,p)−E|<δ
dq dp+ O(�1−n) .

(1)

S. Nonnenmacher: Fractal Weyl Law for Open Chaotic Maps, Lect. Notes Phys. 690, 435–450
(2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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This formula connects the density of quantum eigenvalues with the geometry
of the classical energy surface ΣE . It shows that the number of resonances
in an interval of type [E + C�, E − C�] is of order O(�1−n). Intuitively, this
Weyl law means that one quantum state is associated with each phase space
cell of volume (2π�)n.

When ΣE is non-compact, or even of infinite volume, the spectral prop-
erties of H� are different. Consider the case of a scattering situation, when
the potential V (q) is of compact support: for any E > 0, ΣE is unbounded,
and H� admits absolutely continuous spectrum on [0,∞). However, one can
meromorphically continue the resolvent (z −H�)−1 across the real axis from
the upper half-plane into the lower half-plane. In general, this continuation
will have discrete poles {zj = Ej − Iγj} with “widths” γj > 0, which are the
resonances of H�.

Physically, each resonance is associated with a metastable state: a (not
square-integrable) solution of the Schrödinger equation at the energy zj ,
which decays like e−tγj/� when t → +∞. In spectroscopy experiments, one
measures the energy dependence of some scattering cross-section σ(E). Each
resonance zj imposes a Lorentzian component γj

(E−Ej)2+γ2
j

on σ(E); a res-

onance zj will be detectable on the signal σ(E) only if its Lorentzian is
well-separated from the ones associated with nearby resonances of compara-
ble widths, therefore iff |E′

j −Ej | � γj . This condition of “well-separability”
is NOT the one we will be interested in here. We will rather consider the
order of magnitude of each resonance lifetime �/γj , independently of the
nearby ones, in the semiclassical régime: a resonant state will be “visible”,
or “long-living”, if γj = O(�). Our objective will be to count the number of
resonances zj in boxes of the type {|Ej−E| ≤ C� , γj ≤ C�}, or equivalently
{|zj − E| ≤ C�}.

1.2 Trapped Sets

Since resonant states are “invariant up to rescaling”, it is natural to relate
them, in the semiclassical spirit, to invariant structures of the classical dy-
namics. For a scattering system, the set of points (of energy E) which don’t
escape to infinity (either in past or future) is called the trapped set at energy
E, and denoted by K(E). The textbook example of a radially-symmetric po-
tential shows that this set may be empty (if V (r) decreases monotonically
from r = 0 to r → ∞), or have the same dimension as ΣE (if V (r) has a
maximum V (r0) > 0 before decreasing as r → ∞).

For n = 2 degrees of freedom, the geometry of the trapped set can be more
complex. Let us consider the well-known example of 2-dimensional scattering
by a set of non-overlapping disks [5,9] (a similar model was studied in [2,26]).

When the scatterer is a single disk, the trapped set is obviously empty.
The scattering by two disks admits a single trapped periodic orbit,

bouncing back and forth between the disks. Since the evolution between
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two bounces is “trivial”, it is convenient to represent the scattering sys-
tem through the bounce map on the reduced phase space (position along
the boundaries × velocity angle). This map is actually defined only on a
fraction of this phase space, namely on those points which will bounce again
at least once. For the 2-disk system, this map has a unique periodic point
(of period 2), which is of hyperbolic nature due to the curvature of the disks.
The trapped set K of the map (“reduced” trapped set) reduces to this pair
of points; it lies at the intersection of the forward trapped set Γ− (points
trapped as t → +∞) and the backward trapped set Γ+ (points trapped as
t→ −∞).

The addition of a third disk generates a complex bouncing dynamics, for
which the trapped set is a fractal repeller [9]. We will explain in the next
section how such a structure arises in the case of the open baker’s map. As
in the 2-disk case, the bounce map is uniformly hyperbolic; each forward
trapped point x ∈ Γ− admits a stable manifold W−(x) (and vice-versa for
x ∈ Γ+). One can show that Γ− is fractal along the unstable direction W+:
Γ−∩W+ has a Hausdorff dimension 0 < d < 1 which depends on the positions
and sizes of the disks. Due to time-reversal symmetry, Γ+∩W− has the same
Hausdorff dimension. Finally, the reduced trapped set K = Γ+ ∩ Γ− is a
fractal of dimension 2d, which contains infinitely many periodic orbits. The
unreduced trapped set K(E) ⊂ ΣE has one more dimension corresponding
to the direction of the flow, so it is of dimension D = 2d+ 1.

1.3 Fractal Weyl Law

We now relate the geometry of the trapped set K(E), to the density of
resonances of the quantized Hamiltonian Hh in boxes { |z − E| ≤ C� }. The
following conjecture (which dates back at least to the work of Sjöstrand [21])
relates this density with the “thickness” of the trapped set.

Conjecture 1. Assume that the trapped set K(E) at energy E has dimension
2dE + 1. Then, the density of resonances near E grows as follows in the
semiclassical limit:

∀r > 0,
#
{
Res(H�) ∩ { z : |z − E| < r � }

}

�−dE

h→0−→ cE(r) , (2)

for a certain “shape function” 0 ≤ cE(r) <∞.

We were voluntarily rather vague on the concept of “dimension” (a fractal
set can be characterized by many different dimensions). In the case of a
closed system, K(E) has dimension 2n−1, so we recover the Weyl law (1). If
K(E) consists in one unstable periodic orbit, the resonances form a (slightly
deformed) rectangular lattice of sides ∝ �, so each �-box contains at most
finitely many resonances [22].

For intermediate situations (0 < dE < n − 1), one has only been able
to prove one half of the above estimate, namely the upper bound for this
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resonance counting [10, 21, 24, 27]. The dimension appearing in these upper
bounds is the Minkowski dimension defined by measuring ε-neighborhoods of
K(E). In the case we will study, this dimension is equal to the Hausdorff one.
Some lower bounds for the resonance density have been obtained as well [23],
but are far below the conjectured estimate.

Several numerical studies have attempted to confirm the above estimate
for a variety of scattering Hamiltonians [10,12–14], but with rather inconclu-
sive results. Indeed, it is numerically demanding to compute resonances. One
method is to “complex rotate” the original Hamiltonian into a non-Hermitian
operator, the eigenvalues of which are the resonances. Another method uses
the (approximate) relationship between, on one side, the resonance spectrum
of H�, one the other side, the set of zeros of some semiclassical zeta function,
which is computed from the knowledge of classical periodic orbits [5, 14]. In
the case of the geodesic flow on a convex co-compact quotient of the Poincaré
disk (which has a fractal trapped set), the resonances of the Laplace operator
are exactly given by the zeros of Selberg’s zeta function. Even in that case, it
has been difficult to check the asymptotic Weyl law (2), due to the necessity
to reach sufficiently high values of the energy [10].

1.4 Open Maps

Confronted with these difficulties to deal with open Hamiltonian systems, we
decided to study semiclassical resonance distributions for toy models which
have already proven efficient to modelize closed systems. In the above ex-
ample of obstacle scattering, the bounce map emerged as a way to simplify
the description of the classical dynamics. It acts on a reduced phase space,
and gets rid of the “trivial” evolution between bounces. The exact quantum
problem also reduces to analyzing an operator acting on wavefunctions on
the disk boundaries, but this operator is infinite-dimensional, and extracting
its resonances is not a simple task [2, 9].

Canonical maps on the 2-torus were often used to mimic closed Hamil-
tonian systems; they can be quantized into unitary matrices, the eigenphases
of which are to be compared with the eigenvalues e−iEj/� of the propagator
e−iH�/� (see e.g. [7] and references therein for a mathematical introduction
on quantum maps).

We therefore decided to construct a “toy bounce map” on T
2, with dy-

namics similar to the original bounce map, and which can be easily quantized
into an N ×N subunitary matrix (where N = (2π�)−1). This matrix is then
easily diagonalized, and its subunitary eigenvalues {λj} should be compared
with the set {e−izj/�}, where the zj are the resonances of H� near some
positive energy E. We cannot prove any direct correspondence between, on
one side the eigenvalues of our quantized map, on the other side resonances
of a bona fide scattering Hamiltonian. However, we expect a semiclassical
property like the fractal Weyl law to be robust, in the sense that it should be
shared by all types of “quantum models”. To support this claim, we notice
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that the usual, “closed” Weyl law is already (trivially) satisfied by quantized
maps: the number of eigenphases θj on the unit circle (corresponding to an
energy range ∆E = 2π�) is exactly N = (2π�)−1, which agrees with the Weyl
law (1) for n = 2 degrees of freedom. Testing Conjecture 1 in the framework
of quantum maps should therefore give a reliable hint on its validity for more
realistic Hamiltonian systems.

Schomerus and Tworzyd�lo recently studied the quantum spectrum of an
open chaotic map on the torus, namely the open kicked rotator [20]; they
obtain a good agreement with a fractal Weyl law for the resonances (despite
the fact that the geometry of the trapped set is not completely understood
for that map). The authors also provide a heuristic argument to explain this
Weyl law. We believe that this argument, upon some technical improvement,
could yield a rigorous proof of the upper bound for the fractal Weyl law in
case of maps.

We preferred to investigate that problem using one of the best understood
chaotic maps on T

2, namely the baker’s map.

2 The Open Baker’s Map and Its Quantization

2.1 Classical Closed Baker

The (closed) baker’s map is one of the simplest examples of uniformly hyper-
bolic, strongly chaotic systems (it is a perfect model of Smale’s horseshoe).
The “3-baker’s map” B on T

2 ≡ [0, 1) × [0, 1) is defined as follows:

T
2 � (q, p) �→ B(q, p) =






(3q, p3 ) if 0 ≤ q < 1/3 ,
(3q − 1, p+1

3 ) if 1/3 ≤ q < 2/3 ,
(3q − 2, p+2

3 ) if 2/3 ≤ q < 1.
(3)

This map preserves the symplectic form dq ∧ dp on T
2, and is invertible.

Compared with a generic Anosov map, it has the particularity to be linear
by parts, and its linearized dynamics (well-defined away from its lines of
discontinuities) is independent of the point x ∈ T

2. As a consequence, the
stretching exponent is constant on T

2, as well as the unstable/stable direc-
tions (horizontal/vertical).

This map admits a very simple Markov partition, made of the three
vertical rectangles Rj = {q ∈ [j/3, (j + 1)/3), p ∈ [0, 1)}, j = 0, 1, 2 (see
Fig. 1). Any bi-infinite sequence of symbols . . . ε−2ε−1 · ε0ε1ε2 . . . (where each
εi ∈ {0, 1, 2}) will be associated with the unique point x s.t. Bt(x) ∈ Rεt for
all t ∈ Z. This is the point of coordinates (q, p), where q and p admit the
ternary decompositions

q = 0 · ε0ε1 . . . def=
∑

i≥1

εi−1

3i
, p = 0 · ε−1ε−2 . . . .
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The baker’s map B simply acts as a shift on this symbolic sequence:

B(x = . . . ε−2ε−1 · ε0ε1ε2 . . .) = . . . ε−2ε−1ε0 · ε1ε2 . . . . (4)

2.2 Opening the Classical Map

We explained above that the bounce maps associated with the 2- or 3-disk
systems were defined only on parts of the reduced phase space, namely on
those points which bounce at least one more time. The remaining points,
which escape to infinity right after the bounce, have no image through the
map.

Hence, to open our baker’s map B, we just decide to restrict it on a subset
S ⊂ T

2, or equivalently we send points in T
2 \ S to infinity. We obtain an

Anosov map “with a hole”, a class of dynamical systems recently studied
in the literature [4]. The study is simpler when the hole corresponds to a
Markov rectangle [3], so this is the choice we will make (we expect the fractal
Weyl law to hold for an arbitrary hole as well). Let us choose for the hole the
second Markov rectangle R1, so that S = R0 ∪ R2. Our open map C = B�S
reads (see Fig. 1):

C(q, p) =
{

(3q, p3 ) if q ∈ R0 ,

(3q − 2, p+2
3 ) if q ∈ R2.

(5)

This map is canonical on S, and its inverse C−1 is defined on the set C(S).

Cp

1q

1

0

R0 R1 R2

Fig. 1. Open baker’s map C. The points in the middle rectangle are sent to infinity.

Our choice for S coincides with the points x = (q, p) satisfying ε0(x) ∈ {0, 2}
(equivalently, points s.t. ε0(x) = 1 are sent to infinity through C). This allows
us to characterize the trapped sets very easily:

– the forward trapped set Γ− (see fig. 2) is made of the points x which
will never fall in the strip R1 for times t ≥ 0: these are the points s.t.
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εi ∈ {0, 2} for all i ≥ 0, with no constraint on the εi for i < 0. This set
is of the form Γ− = Can× [0, 1), where Can is the standard 1/3-Cantor
set on the unit interval. As a result, the intersection Γ− ∩W+ ≡ Can has
the Hausdorff (or Minkowski) dimension d = log 2

log 3 .
– the backward trapped set Γ+ is made of the points satisfying εi ∈ {0, 2}

for all i < 0, and is given by [0, 1) × Can.
– the full trapped set K = Can× Can.

0

1

1q

p

Fig. 2. Iterative construction of the forward trapped set Γ− for the open baker’s
map C: we remove from T

2 the points leaving to infinity at times t = 1, 2, 3, 4
(from light grey to dark grey) etc. At the end, there remains the fractal set Γ− =
Can × [0, 1).

2.3 Quantum Baker’s Map

We now describe in some detail the quantization of the above maps. We
recall [6, 7] that a nontrivial quantum Hilbert space can be associated with
the phase space T

2 only for discrete values of Planck’s constant, namely
� = (2πN)−1, N ∈ N0. In that case (the only one we will consider), this space
HN is of dimension N . It admits the “position” basis {Qj , j = 0, . . . , N −1}
made of the “Dirac combs”

Qj(q) =
1√
N

∑

ν∈Z

δ(q − j

N
− ν) .

This basis is connected to the “momentum” basis {Pk, k = 0, . . . , N − 1}
through the discrete Fourier transform:

〈Pk|Qj〉 = (FN )kj =
e−2iπNkj

√
N

, j, k ∈ {0, . . . , N − 1} , (6)
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where the Fourier matrix FN is unitary. Balazs and Voros [1] proposed to
quantize the closed baker’s map B as follows, when N is a multiple of 3 (a
condition we will always assume): in the position basis, it takes the block
form

BN = F−1
N





FN/3
FN/3

FN/3



 . (7)

This matrix is obviously unitary, and exactly satisfies the Van Vleck formula
(the semiclassical expression for a quantum propagator, in terms of the clas-
sical generating function). In the semiclassical limit N → ∞, it was shown [8]
that these matrices classically propagate Gaussian coherent states supported
far enough from the lines of discontinuities. As usual, discontinuities of the
classical dynamics induce diffraction effects at the quantum level, which have
been partially analyzed for the baker’s map [25] (in particular, diffractive
orbits have to be taken into account in the Gutzwiller formula for tr(BtN )).
We believe that these diffractive effects should only induce lower-order cor-
rections to the Weyl law (9).

We are now ready to quantize our open baker’s map C of (5): since the
classical map sends points in R1 to infinity and acts through B on S =
R0 ∪ R2, the quantum propagator should kill states microsupported on R1,
and act as BN on states microsupported on S. Therefore, in the position
basis we get the subunitary matrix

CN = F−1
N





FN/3
0
FN/3



 . (8)

A very similar open quantum baker was constructed in [18], as a quantization
of Smale’s horseshoe. In Fig. 3 (left) we represent the moduli of the matrix
elements (CN )nm. The largest elements are situated along the “tilted diag-
onals” n = 3m, n = 3(m − 2N/3), which correspond to the projection on
the q-axis of the graph of C. Away from these “diagonals”, the amplitudes of
the elements decrease relatively slowly (namely, like 1/|n − 3m|). This slow
decrease is due to the diffraction effects associated with the discontinuities of
the map.

2.4 Resonances of the Open Baker’s Map

We numerically diagonalized the matrices CN , for larger and larger Planck’s
constants N . First of all, we notice that the subspace Span{Qj , j =
N/3, . . . , 2N/3− 1}, made of position states in the “hole”, is in the kernel of
CN . Therefore, it is sufficient to diagonalize the matrix obtained by removing
the corresponding lines and columns. Upon a slight modification of the quan-
tization procedure [17], one obtains for CN a matrix covariant w.r.to parity,
allowing for a separation of the even and odd eigenstates, and therefore re-
ducing the dimension of each part by 2. This is the quantization we used for
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Fig. 3. Graphical representation of the matrices CN (8) and C̃N (10). Each grey
square represents the modulus of a matrix element (white=0, black=1/

√
3)

our numerics: we only plot the even-parity resonances (the distribution of the
odd-parity ones is very similar). In Fig. 4 we show the even-parity spectra of
the matrix CN for N = 35 and N = 38. Although we could not detect exact
null states for the reduced matrix, many among the N/3 eigenvalues had very
small moduli: for large values of N , the spectrum of CN accumulates near
the origin. This accumulation is an obvious consequence of the fractal Weyl
law we want to test:

Conjecture 2. For any radius 1 > r > 0 and N ∈ N0, 3|N , let us denote
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Fig. 4. Even-parity spectrum of the matrices CN for N/3 = 81, 2187
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n(N, r) def= #
{
λ ∈ Spec(CN ) ∩ { |λ| ≥ r }

}
.

In the semiclassical limit, this counting function behaves as

n(N, r)

N
log 2
log 3

N→∞−→ c(r) , (9)

with a “shape function” 0 ≤ c(r) <∞.

To test this conjecture, we proceed in two ways:
• In a first step, we select some discrete values for r, and plot n(N, r) for

an arbitrary sequence of N , in a log-log plot (see Fig. 5). We observe that the

3 4 5 6 7 8 9 10

log(N)

1

2

3

4

5

6

7

lo
g(

n(
N

,r
))

N=200*3^k, r=0.5
N random, r=0.5
N=27x3^k, r=0.5
N=27x3^k, r=0.15
N=27x3^k, r=0.03
theoretical slope

Even eigenvalues of open 3-baker
Counting eigenvalues in logarithmic scale

Fig. 5. Checking the N -dependence of n(N, r) for various values of r, along geo-
metric and arbitrary sequences for N . The thick curve has the slope log 2/ log 3

slope of the data nicely converges towards the theoretical one log 2
log 3 (thick line),

all the more so along geometric subsequences N = 3kNo, and for relatively
large values of the radius (r = 0.5). For the smaller value r = 0.03, the
annulus {|z| ≥ r} still contains “too many resonances” and the asymptotic
régime is not yet reached.

• In a second step, confident that n(N, r) scales like N
log 2
log 3 , we try to

extract the shape function c(r). For an arbitrary sequence of values of N , we
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Fig. 6. On the left, we plot the number n(N, r) of even eigenvalues of CN of

modulus ≥ r. On the right plot, we rescale those functions by the factors N
− log 2

log 3

plot the function n(N, r) (Fig. 6, left), and then rescale the vertical coordinate
by a factor N− log 2

log 3 (right). The rescaled curves do roughly superpose on
one another, supporting the conjecture. However, there remains relatively
large fluctuations, even for large values of N . The curves corresponding to a
geometric sequence N = 3kNo, k = 0, 1, . . . tend to be nicely superposed to
one another, but slightly differ from one sequence to another. Similar plots
were given in [20] in the case of the kicked rotator; the shape function c(r)
is conjectured there to correspond to some ensemble of random subunitary
matrices. Our data are too unprecise to perform such a check.

The fact that the spectra of the matrices CN “behave nicely” along geo-
metric sequences, while they fluctuate more strongly between successive val-
ues of N , is not totally unexpected (similar phenomena had been noticed for
the quantizations BN of the closed baker [1]). In view of Fig. 6, our conjecture
(9) may be too strict if we apply it to a general sequence of N . At least, it
seems to be satisfied along geometric sequences

{
3kNo, k ∈ N

}
, with shape

functions cNo
(r) slightly depending on the sequence.
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3 A Solvable Toy Model for the Quantum Baker

3.1 Description of the Toy Model

In an attempt to get some analytical grip on the resonances, we tried to
simplify the quantum matrix CN , keeping only its “backbone” along the
tilted diagonals and removing the off-diagonal components. We obtained the
“toy-of-the-toy model” given by the following matrices (the moduli of the
components are shown on right plot of Fig. 3):

C̃N=9 =
1√
3

















1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 ω2 0 0
1 0 0 0 0 0 ω 0 0
0 1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 ω2 0
0 1 0 0 0 0 0 ω 0
0 0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0 ω2

0 0 1 0 0 0 0 0 ω

















, ω = e2πi/3 . (10)

From this example, it is pretty clear how one constructs C̃N forN an arbitrary
multiple of 3. A similar quantization of the closed 2-baker was introduced
in [19].

Before describing the spectra of these matrices, we describe their propa-
gation properties. Removing the “off-diagonal” elements, we have eliminated
the effects of diffraction due to the discontinuities of C. However, this elim-
ination is so abrupt that it modifies the semiclassical transport. Indeed, a
coherent state situated at a point x away from the discontinuities will not
be transformed by C̃N into a single coherent state (as does CN ), but rather
into a linear combination of 3 coherent states, shifted vertically by 1/3 from
one another. Therefore, the matrices C̃N do not quantize the open baker C
of (5), but rather the following multivalued (“ray-splitting”) map:

C̃(q, p) =
{

(3q, p3 ) ∪ (3q, p+1
3 ) ∪ (3q, p+2

3 ) if q ∈ R0 ,

(3q − 2, p3 ) ∪ (3q − 2, p+1
3 ) ∪ (3q − 2, p+2

3 ) if q ∈ R2.
(11)

This modification of the classical dynamics is rather annoying. Still, the dy-
namics C̃ shares some common features with that of C: the forward trapped
set for C̃ is the same as for C, that is the set Γ− described in Fig. 2. On the
other hand, the backward trapped set is now the full torus T

2.

3.2 Interpretation of C̃N as a Walsh-Quantized Baker

A possible way to avoid this modified classical dynamics is to interpret C̃N
as a “Walsh-quantized map” (this interpretation makes sense when N = 3k,
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k ∈ N). To introduce this Walsh formalism, let us first write the Hilbert space
as a tensor product HN = (C3)⊗k, where we take the ternary decomposition
of discrete positions j

N = 0 · ε0ε1 · · · εk−1 into account. If we call {e0, e1, e2}
the canonical basis of C

3, each position state Qj ∈ HN can be represented
as the tensor product state

Qj = eε0 ⊗ eε1 ⊗ · · · ⊗ eεk−1 .

In the language of quantum computing, each tensor factor C
3 is the Hilbert

space of a “qutrit” associated with a certain scale [19].
The Walsh Fourier transform is a modification of the discrete Fourier

transform (6), which first appeared in signal theory, and has been recently
used as a toy model for harmonic analysis [15]. Its major advantage is the pos-
sibility to construct states compactly supported in both position and “Walsh
momentum”. In our finite-dimensional framework, this Walsh transform is
the matrix

(WN )jj′ = 3−k/2 exp
(

− 2iπ
3

∑

�+�′=k−1

ε�(Qj) ε�′(Q′
j)
)

, j, j′ = 0, . . . , N−1 ,

and acts as follows on tensor product states:

WN (v0⊗v1⊗· · · vk−1) = F3vk−1⊗· · · F3v1⊗F3v0 , v� ∈ C
3, � = 0, . . . , k−1 .

Now, in the case N = 3k, our toy model C̃N can be expressed as

C̃N = W−1
N





WN/3
0
WN/3



 .

One can show that “Walsh coherent states” are propagated through C̃N
according to the map C. Hence, as opposed to what happens in “standard”
quantum mechanics, C̃N Walsh-quantizes the open baker C.

3.3 Resonances of C̃N=3k

We now use the very peculiar properties of the matrices C̃3k to analytically
compute their spectra. From the expressions in last section, one can see that
the toy model C̃N acts very simply on tensor product states:

C̃N v0 ⊗ v1 ⊗ · · · vk−1 = v1 ⊗ · · · vk−1 ⊗F−1
3 π02v0 , (12)

where π02 projects C
3 orthogonally onto Span { e0, e2 }. Like its classical

counterpart, C̃N realizes a symbolic shift between the different scales. It also
sends the first symbol ε0 to the “end of the queue”, after a projection and
a Fourier transform. The projection π02 kills the states Qj localized in the
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Fig. 7. Spectra of the matrices C̃N for N = 310 (circles), N = 315 (crosses). The

large circles have radii |λ| = 1, |λ+|, |λ+λ−|
1
2 , |λ−|

rectangle R1. The vector F−1
3 eε0 in the last qutrit induces a localization in

the momentum direction, near the momentum p = 0 · ε0.
By iterating this expression k times, we see that the operator (C̃N )k acts

independently on each tensor factor C
3, through the matrix F−1

3 π02. The
latter has three eigenvalues:

– it kills the state e1, implying that (C̃N )k kills any state Qj for which at
least one of the symbols ε�(Qj) is equal to 1. These 3k−2k position states
are localized “outside” of the trapped set Γ−, which explains why they
are killed by the dynamics.

– its two remaining eigenvalues λ± have moduli |λ+| ≈ 0.8443, |λ−| ≈
0.6838. They build up the (2k-dimensional) nontrivial spectrum of C̃N ,
which has the form of a “lattice” (see Fig. 7):

Proposition 1. For N = 3k, the nonzero spectrum of C̃N is the set

{λ+ } ∪ {λ− }
⋃{

e2iπ
j
k λ

1−p/k
+ λ

p/k
− : 1 ≤ p ≤ k − 1 , 0 ≤ j ≤ k − 1

}

.

Most of these eigenvalues are highly degenerate (they span a subspace of di-
mension 2k). When k → ∞, the highest degeneracies occur when p/k ≈ 2,
which results in the following asymptotic distribution:
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∀f ∈ C(R2), lim
k→∞

1
2k

∑

λ∈Spec(C̃3k )\0

mult(λ) f(λ) =
∫ 2π

0

f(|λ−λ+|1/2, θ)
dθ
2π

.

The last formula shows that the spectrum of C̃N along the geometric sequence
{N = 3k, k ∈ N} satisfies the fractal Weyl law (9), with a shape function
in form of an abrupt step: c(r) = Θ(|λ+λ−|1/2 − r). Although the above
spectrum seems very nongeneric (lattice structure, singular shape function),
it is the first example (to our knowledge) of a quantum open system proven
to satisfy the fractal Weyl law.
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1 Introduction

In this survey article based on the papers [7, 10], and [8], we consider the
3D Schrödinger operator with constant magnetic field of intensity b > 0,
perturbed by an electric potential V which decays fast enough at infinity,
and discuss various asymptotic properties of the corresponding spectral shift
function. More precisely, let H0 = H0(b) := (i∇+A)2−b be the unperturbed
operator, essentially self-adjoint on C∞

0 (R3). Here A =
(
− bx22 , bx12 , 0

)
is the

magnetic potential which generates the constant magnetic field B = curl A =
(0, 0, b), b > 0. It is well-known that σ(H0) = σac(H0) = [0,∞) (see [1]),
where σ(H0) stands for the spectrum of H0, and σac(H0) for its absolutely
continuous spectrum. Moreover, the so-called Landau levels 2bq, q ∈ Z+ :=
{0, 1, . . .}, play the role of thresholds in σ(H0).

For x = (x1, x2, x3) ∈ R
3 we denote by X⊥ = (x1, x2) the variables on the

plane perpendicular to the magnetic field. Throughout the paper we assume
that the electric potential V satisfies

V �≡ 0, V ∈ C(R3), |V (x)| ≤ C0〈X⊥〉−m⊥〈x3〉−m3 , x = (X⊥, x3) ∈ R
3,

(1)
with C0 > 0, m⊥ > 2, m3 > 1, and 〈x〉 := (1 + |x|2)1/2, x ∈ R

d, d ≥ 1. Some
of our results hold under a more restrictive assumption than (1), namely

V �≡ 0, V ∈ C(R3), |V (x)| ≤ C0〈x〉−m0 , m0 > 3, x ∈ R
3. (2)

Note that (2) implies (1) with any m3 ∈ (0,m0) and m⊥ = m0 − m3. In
particular, we can choose m3 ∈ (1,m0 − 2) so that m⊥ > 2.
On the domain of H0 define the operator H = H(b) := H0 + V . Obviously,
inf σ(H) ≤ inf σ(H0) = 0. Moreover, if (1) holds, then for E < inf σ(H)
we have (H − E)−1 − (H0 − E)−1 ∈ S1 where S1 denotes the trace class.
Hence, there exists a unique function ξ = ξ(·;H,H0) ∈ L1(R; (1 +E2)−1dE)
vanishing on (−∞, inf σ(H)), such that the Lifshits-Krein trace formula

Tr (f(H) − f(H0)) =
∫

R

ξ(E;H,H0)f ′(E)dE

holds for each f ∈ C∞
0 (R) (see the original works [20, 22], the survey article

[5], or Chapter 8 of the monograph [44]). The function ξ(·;H,H0) is called

G. Raikov: Spectral Shift Function for Magnetic Schrödinger Operators, Lect. Notes Phys.
690, 451–465 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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the spectral shift function (SSF) for the operator pair (H,H0). If E < 0 =
inf σ(H0), then the spectrum of H below E could be at most discrete, and
for almost every E < 0 we have

ξ(E;H,H0) = −N(E;H) (3)

where N(E;H) denotes the number of eigenvalues of H lying in the interval
(−∞, E), and counted with their multiplicities. On the other hand, for almost
every E ∈ [0,∞), the SSF ξ(E;H,H0) is related to the scattering determinant
det S(E;H,H0) for the pair (H,H0) by the Birman-Krein formula

det S(E;H,H0) = e−2πiξ(E;H,H0)

(see [4] or [44, Sect. 8.4]). A survey of various asymptotic results concerning
the SSF for numerous quantum Hamiltonians is contained in [39].
A priori, the SSF ξ(E;H,H0) is defined for almost every E ∈ R. In this article
we will identify this SSF with a representative of its equivalence class which
is well-defined on R \ 2bZ+, bounded on every compact subset of R \ 2bZ+,
and continuous on R \ (2bZ+ ∪ σpp(H)) where σpp(H) denotes the set of
the eigenvalues of H. In the case of V of definite sign this representative is
described explicitly in Subsect. 2.2 below (see, in particular, (5)). In the case
of non-sign-definite V its description can be found in [7, Sect. 3]. In the
present article we investigate the behaviour of the SSF in several asymptotic
regimes:

– First, we analyse the singularities of the SSF at the Landau levels. In
other words, we fix b > 0 and q ∈ Z+, and investigate the behaviour of
ξ(2bq + λ;H,H0) as λ→ 0.

– Further, we study the strong-magnetic-field asymptotics of the SSF, i.e.
the behaviour of the SSF as b → ∞. Here we distinguish between the
asymptotics far from the Landau levels, and the asymptotics near a given
Landau level.

– Finally, we obtain a Weyl type formula describing the high energy asymp-
totics of the SSF.

The paper is organised as follows. Section 2 contains some auxiliary results: in
Subsect. 2.1 we introduce some basic concepts and notations used throughout
the paper, while In Subsect. 2.2 we describe the representation of the SSF
in the case of perturbations of fixed sign, due to A. Pushnitski (see [29]). In
Sect. 3 we formulate our main results, and discuss briefly on them. More
precisely, Subsect. 3.1 contains the results on the singularities of the SSF
at the Landau levels, Subsect. 3.2 is devoted to the strong magnetic field
asymptotics of the SSF, and Subsect. 3.3 – to its high energy behaviour. We
refer the reader to the original articles [7, 10], and [8], for the proofs of the
results presented in this survey.
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2 Auxiliary Results

2.1 Notations and Preliminaries

In this subsection we give definitions and introduce notations used throughout
the paper. We denote by S∞ the class of linear compact operators acting in
a given Hilbert space. Let T = T ∗ ∈ S∞. Denote by PI(T ) the spectral
projection of T associated with the interval I ⊂ R. For s > 0 set

n±(s;T ) := rank P(s,∞)(±T ) .

For an arbitrary (not necessarily self-adjoint) operator T ∈ S∞ put

n∗(s;T ) := n+(s2;T ∗T ), s > 0 .

Further, we denote by Sp, p ∈ (0,∞), the Schatten-von Neumann class of

compact operators for which the functional ‖T‖p : =
(
p
∫∞
0
sp−1n∗(s;T ) ds

) 1
p

is finite. It is well-known that if p ∈ [1,∞), then Sp are Banach spaces with
norm ‖·‖p. Finally, if T is a bounded linear operator acting in a given Hilbert
space, we set ReT := 1

2 (T + T ∗), ImT := 1
2i (T − T ∗).

2.2 A. Pushnitski’s Representation of the SSF

In this subsection we introduce a representation of the SSF ξ(·;H,H0) in the
case of sign-definite potentials V

Let I ∈ R be a Lebesgue measurable set. Set µ(I) := 1
π

∫

I
dt

1+t2 .

Lemma 1. [29, Lemma 2.1] Let T1 = T ∗
1 ∈ S∞ and T2 = T ∗

2 ∈ S1. Then
∫

R

n±(s1 + s2;T1 + t T2) dµ(t) ≤ n±(s1;T1) +
1
πs2

‖T2‖1, s1, s2 > 0 . (4)

Suppose that V satisfies (1), and ±V ≥ 0; in this case we will writeH = H± =
H0 ± |V |. For z ∈ C, Im z > 0, set T (z) := |V |1/2(H0 − z)−1|V |1/2 ∈ S∞.

Proposition 1. [7, Lemma 4.2] Assume that (1) holds, and E ∈ R \ 2bZ+.
Then the operator limit T (E+ i0) := n− limδ↓0 T (E+ iδ) exists, and we have

‖T (E + i0)‖ ≤ C1 (dist (E, 2bZ+))−1/2

with C1 independent of E and b. Moreover, 0 ≤ ImT (E + i0) ∈ S1, and if
E < 0 then ImT (E + i0) = 0, while for E ∈ (0,∞) \ 2bZ+ we have

‖ImT (E + i0)‖1 = Tr ImT (E + i0) =
b

4π

[ E
2b ]
∑

l=0

(E − 2bl)−1/2

∫

R3
|V (x)|dx

where [x] denotes the integer part of x ∈ R.



454 G. Raikov

By Lemma 1 and Proposition 1, the quantity

ξ̃(E;H±,H0) = ±
∫

R

n∓(1; ReT (E + i0) + t ImT (E + i0)) dµ(t) (5)

is well-defined for every E ∈ R\2bZ+, and bounded on every compact subset
of R \ 2bZ+. Moreover, by [7, Proposition 2.5], ξ̃(·;H±,H0) is continuous on
R \ {2bZ+ ∪ σpp(H±)}. On the other hand, the general result of [29, Theo-
rem 1.2] implies ξ̃(E;H±,H0) = ξ(E;H±,H0) for almost every E ∈ R. As
explained in the introduction, in the case of sign-definite perturbations we
will identify the SSF ξ(E;H±,H0) with ξ̃(E;H±,H0), while in the case of
non-sign-definite perturbations, we will identify it with the generalisation of
ξ̃(E;H±,H0) described in [7, Sect. 3] on the basis of the general results of [14]
and [30], using the concept of the index of orthogonal projections (see [2]).

Here it should be underlined that in contrast to the case b = 0, we cannot
rule out the possibility that the operator H has infinite discrete spectrum, or
eigenvalues embedded in the continuous spectrum by imposing short-range
conditions on V . First, it is well-known that if V satisfies

V (x) ≤ −Cχ(x), x ∈ R
3 , (6)

where C > 0, and χ is the characteristic function of a non-empty open subset
of R

3, then the discrete spectrum of H is infinite (see [1, Theorem 5.1], [38,
Theorem 2.4]). Further, assume that V is axisymmetric, i.e. V = V (|X⊥|, x3).
It is well-known (see e.g. [1]) that in this case the operators H0 and H are
unitarily equivalent to the orthogonal sums

∑

m∈Z
⊕H(m) and

∑

m∈Z
⊕H(m)

0

respectively, where the operators

H
(m)
0 := −1

#

∂

∂#
#
∂

∂#
− ∂2

∂x2
3

+
(
b#

2
+
m

#

)2

− b, H(m) := H
(m)
0 + V (#, x3) ,

(7)
are self-adjoint in L2(R+ × R; #d#dx3). Assume moreover that V satisfies
(6). Then the operator H(m) with m ≥ 0 has at least one eigenvalue in the
interval (2bm − ‖V ‖L∞(R3), 2bm), and hence the operator H has infinitely
many eigenvalues embedded in its continuous spectrum (see [1, Theorem
5.1]). Suppose now that V is axisymmetric and satisfies the estimate

V (X⊥, x3) ≤ −Cχ⊥(X⊥)〈x3〉−m3 , (X⊥, x3) ∈ R
3 , (8)

where C > 0, χ⊥ is the characteristic function of a non-empty open subset
of R

2, and m3 ∈ (0, 2) which is compatible with (1) if m3 ∈ (1, 2). Then,
using the argument of the proof of [1, Theorem 5.1] and the variational
principle, we can easily check that for each m ≥ 0 the operator H(m) has
infinitely many discrete eigenvalues which accumulate to the infimum 2bm
of its essential spectrum. Hence, if V is axisymmetric and satisfies (8), then
below each Landau level 2bq, q ∈ Z+, there exists an infinite sequence of
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finite-multiplicity eigenvalues of H, which converges to 2bq. Note however
that the claims in [10, p. 385] and [8, p. 3457] that [1, Theorem 5.1] implies
the same phenomenon for axisymmetric non-positive potentials compactly
supported in R

3, are not justified. The challenging and interesting problem
about the accumulation at a given Landau level of embedded eigenvalues
and/or resonances of H will be considered in a future work. Finally, we note
that generically the only possible accumulation points of the eigenvalues of
H are the Landau levels (see [1, Theorem 4.7], [13, Theorem 3.5.3 (iii)]).
Further information on the location of the eigenvalues of H can be found
in [7, Proposition 2.6].

3 Main Results

3.1 Singularities of the SSF at the Landau Levels

Introduce the Landau Hamiltonian

h(b) :=
(

i
∂

∂x1
− bx2

2

)2

+
(

i
∂

∂x2
+
bx1

2

)2

− b ,

essentially self-adjoint on C∞
0 (R2). It is well-known that σ(h(b)) = ∪∞

q=0 {2bq}
and each eigenvalue 2bq, q ∈ Z+, has infinite multiplicity (see e.g. [1]). Denote
by pq = pq(b) the orthogonal projection onto the eigenspace Ker (h(b)−2bq),
q ∈ Z+. The estimates of the SSF for energies near the Landau level 2bq,
q ∈ Z+, will be given in the terms of traces of functions of Toeplitz operators
pqUpq where U : R

2 → R decays in a certain sense at infinity.

Lemma 2. [31, Lemma 5.1], [10, Lemma 3.1] Let U ∈ Lr(R2), r ≥ 1, and
q ∈ Z+. Then pqUpq ∈ Sr.
Assume that (1) holds. For X⊥ ∈ R

2 set W (X⊥) :=
∫

R
|V (X⊥, x3)|dx3. Since

V satisfies (1), we have W ∈ L1(R2), and Lemma 2 with U = W implies
pqWpq ∈ S1, q ∈ Z+. Evidently, pqWpq ≥ 0, and it follows from V �≡ 0 and
V ∈ C(R2), that rank pqWpq = ∞ for all q ∈ Z+ (see below Lemma 5). If,
moreover, V satisfies (2), then 0 ≤W (X⊥) ≤ C ′

0〈X⊥〉−m0+1, X⊥ ∈ R
2, with

C ′
0 = C0

∫

R
〈x〉−m0dx.

In the following two theorems we assume that V has a definite sign. As
in Subsect. 2.2, if ±V ≥ 0, we will write H = H± = H0 ± |V |.
Theorem 1. [10, Theorem 3.1] Assume that (2) is valid, and ±V ≥ 0. Let
q ∈ Z+, b > 0. Then the asymptotic estimates

ξ(2bq − λ;H+,H0) = O(1) ,

−n+((1 − ε)2
√
λ; pqWpq) +O(1) ≤ ξ(2bq − λ;H−,H0) ≤

− n+((1 + ε)2
√
λ; pqWpq) +O(1), (9)

hold as λ ↓ 0 for each ε ∈ (0, 1).
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Suppose that V satisfies (1). For λ ≥ 0 define the matrix-valued function

Wλ = Wλ(X⊥) :=
(
w11 w12

w21 w22

)

, X⊥ ∈ R
2 ,

where
w11 :=

∫

R

|V (X⊥, x3)| cos2 (
√
λx3)dx3 ,

w12 = w21 :=
∫

R

|V (X⊥, x3)| cos (
√
λx3) sin (

√
λx3)dx3 ,

w22 :=
∫

R

|V (X⊥, x3)| sin2 (
√
λx3)dx3 .

It is easy to check that for λ ≥ 0 and q ∈ Z+ the operator pqWλpq :
L2(R2)2 → L2(R2)2 satisfies 0 ≤ pqWλpq ∈ S1, and rank pqWλpq = ∞.

Theorem 2. [10, Theorem 3.2] Assume that (2) is valid, and ±V ≥ 0. Let
q ∈ Z+, b > 0. Then the asymptotic estimates

± 1
π

Tr arctan (((1 ± ε)2
√
λ)−1pqWλpq) +O(1) ≤ ξ(2bq + λ;H±,H0) ≤

± 1
π

Tr arctan (((1 ∓ ε)2
√
λ)−1pqWλpq) +O(1) (10)

hold as λ ↓ 0 for each ε ∈ (0, 1).

Relations (9) and (10) allow us to reduce the analysis of the behaviour as
λ → 0 of ξ(2bq + λ;H±,H0), to the study of the asymptotic distribution of
the eigenvalues of Toeplitz-type operators pqUpq. The following three lemmas
concern the spectral asymptotics of such operators.

Lemma 3. [31, Theorem 2.6] Let the function 0 ≤ U ∈ C1(R2) satisfy the
estimates

U(X⊥) = u0(X⊥/|X⊥|)|X⊥|−α(1 + o(1)), |X⊥| → ∞ ,

|∇U(X⊥)| ≤ C1〈X⊥〉−α−1, X⊥ ∈ R
2 ,

where α > 0, and u0 is a continuous function on S
1 which is non-negative

and does not vanish identically. Then for each q ∈ Z+ we have

n+(s; pqUpq) =
b

2π

∣
∣
{
X⊥ ∈ R

2|U(X⊥) > s
}∣
∣ (1 + o(1))

= ψα(s) (1 + o(1)), s ↓ 0 ,

where |.| denotes the Lebesgue measure, and

ψα(s) := s−2/α b

4π

∫

S1
u0(t)2/αdt, s > 0 . (11)
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Lemma 4. [38, Theorem 2.1, Proposition 4.1] Let 0 ≤ U ∈ L∞(R2). Assume
that

ln U(X⊥) = −µ|X⊥|2β(1 + o(1)), |X⊥| → ∞ ,

for some β ∈ (0,∞), µ ∈ (0,∞). Then for each q ∈ Z+ we have

n+(s; pqUpq) = ϕβ(s)(1 + o(1)), s ↓ 0 ,

where

ϕβ(s) :=






b
2µ1/β |lns|1/β if 0 < β < 1 ,

1
ln(1+2µ/b) |lns| if β = 1,
β
β−1 (ln|lns|)−1|lns| if 1 < β <∞,

s ∈ (0, e−1) . (12)

Lemma 5. [38, Theorem 2.2, Proposition 4.1] Let 0 ≤ U ∈ L∞(R2). Assume
that the support of U is compact, and there exists a constant C > 0 such that
U ≥ C on an open non-empty subset of R

2. Then for each q ∈ Z+ we have

n+(s; pqUpq) = ϕ∞(s) (1 + o(1)), s ↓ 0 ,

where
ϕ∞(s) := (ln|lns|)−1|lns|, s ∈ (0, e−1) . (13)

Employing Lemmas 3, 4, 5, we easily find that asymptotic estimates (9) and
(10) entail the following

Corollary 1. [10, Corollaries 3.1 – 3.2] Let (2) hold with m0 > 3.
i) Assume that the hypotheses of Lemma 3 hold with U = W and α > 2.
Then

ξ(2bq − λ;H−,H0) = − b

2π

∣
∣
∣

{

X⊥ ∈ R
2|W (X⊥) > 2

√
λ
}∣
∣
∣ (1 + o(1))

= −ψα(2
√
λ) (1 + o(1)), λ ↓ 0 , (14)

ξ(2bq + λ;H±,H0) = ± b

2π2

∫

R2
arctan ((2

√
λ)−1W (X⊥))dX⊥ (1 + o(1))

= ± 1
2 cos (π/α)

ψα(2
√
λ) (1 + o(1)), λ ↓ 0 .

the function ψα being defined in (11).
ii) Assume that the hypotheses of Lemma 4 hold with U = W . Then

ξ(2bq − λ;H−,H0) = −ϕβ(2
√
λ) (1 + o(1)), λ ↓ 0, β ∈ (0,∞) ,

the functions ϕβ being defined in (12). If, in addition, V satisfies (1) for
some m⊥ > 2 and m3 > 2, we have

ξ(2bq + λ;H±,H0) = ± 1
2
ϕβ(2

√
λ) (1 + o(1)), λ ↓ 0, β ∈ (0,∞) .
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iii) Assume that the hypotheses of Lemma 5 hold with U = W . Then

ξ(2bq − λ;H−,H0) = −ϕ∞(2
√
λ) (1 + o(1)), λ ↓ 0 ,

the function ϕ∞ being defined in (13). If, in addition, V satisfies (1) for some
m⊥ > 2 and m3 > 2, we have

ξ(2bq + λ;H±,H0) = ± 1
2
ϕ∞(2

√
λ) (1 + o(1)), λ ↓ 0 ,

the function ϕ∞ being defined in (13).

In particular, we find that

lim
λ↓0

ξ(2bq − λ;H−,H0)
ξ(2bq + λ;H−,H0)

=
1

2 cos πα
(15)

if W has a power-like decay at infinity (more precisely, if the assumptions of
Corollary 1 i) hold), or

lim
λ↓0

ξ(2bq − λ;H−,H0)
ξ(2bq + λ;H−,H0)

=
1
2

(16)

if W decays exponentially or has a compact support (more precisely, if the
assumptions of Corollary 1 ii) - iii) are fulfilled). Relations (15) and (16) could
be interpreted as analogues of the classical Levinson formulae (see e.g. [39]).

Remarks: i) Since the ranks of pqWpq and pqWλpq are infinite, the quantities
n+(s2

√
λ; pqWpq) and Tr arctan ((s2

√
λ)−1pqWλpq) tend to infinity as λ ↓ 0

for every s > 0. Therefore, Theorems 1 and 2 imply that the SSF ξ(·;H±,H0)
has a singularity at each Landau level. The existence of singularities of the
SSF at strictly positive energies is in sharp contrast with the non-magnetic
case b = 0 where the SSF ξ(E;−∆ + V,−∆) is continuous for E > 0 (see
e.g. [39]). The main reason for this phenomenon is the fact that the Landau
levels play the role of thresholds in σ(H0) while the free Laplacian −∆ has
no strictly positive thresholds in its spectrum.

It is conjectured that the singularity of the SSF ξ(·;H±(b),H0(b)), b > 0,
at a given Landau level 2bq, q ∈ Z+, could be related to a possible accu-
mulation of resonances and/or eigenvalues of H at 2bq. Here it should be
recalled that in the case b = 0 the high energy asymptotics (see [27]) and the
semi-classical asymptotics (see [28]) of the derivative of the SSF for appropri-
ate compactly supported perturbations of the Laplacian, are related by the
Breit-Wigner formula to the asymptotic distribution near the real axis of the
resonances defined as poles of the meromorphic continuation of the resolvent
of the perturbed operator.
ii) In the case q = 0, when by (3) we have ξ(−λ;H−,H0) = −N(−λ;H−) for
λ > 0, asymptotic relations of the type of (14) have been known since long ago
(see [42], [41], [17,31,43]). An important characteristic feature of the methods
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used in [31], and later in [38], is the systematic use, explicit or implicit, of
the connection between the spectral theory of the Schrödinger operator with
constant magnetic field, and the theory of Toeplitz operators acting in holo-
morphic spaces of Fock-Segal-Bargmann type and the related pseudodifferen-
tial operators with generalised anti-Wick symbols (see [3,12,15,40]). Various
important aspects of the interaction between these two theories have been
discussed in [37] and [7, Sect. 9]. The Toeplitz-operator approach turned to
be especially fruitful in [38] where electric potentials decaying rapidly at infin-
ity (i.e. decaying exponentially, or having compact support) were considered
(see Lemmas 4 - 5). It is shown in [11] that the precise spectral asymptot-
ics for the Landau Hamiltonian perturbed by a compactly supported electric
potential U of fixed sign recovers the logarithmic capacity of the support of
U .
iii) Let us mention several other existing extensions of Lemmas 3 – 5. Lemmas
3 and 5 have been generalised to the multidimensional case where pq is the
orthogonal projection onto a given eigenspace of the Schrödinger operator
with constant magnetic field of full rank, acting in L2(R2d), d > 1 (see [31]
and [25] respectively). Moreover, Lemma 5 has been generalised in [25] to
a relativistic setting where pq is an eigenprojection of the Dirac operator.
Finally, in [36] Lemmas 3 – 5 have been extended to the case of the 2D Pauli
operator with variable magnetic field from a certain class including the al-
most periodic fields with non-zero mean value (in this case the role of the
Landau levels is played by the origin), and electric potentials U satisfying
the assumptions of Lemmas 3 – 5. In the case of compactly supported U of
definite sign, [11] contains a more precise version of the corresponding result
of [36], involving again the logarithmic capacity of the support of U .
iv) To the author’s best knowledge, the singularities at the Landau levels of
the SSF for the 3D Schrödinger operator in constant magnetic field have been
investigated for the first time in [10]. However, it is appropriate to mention
here the article [19] where axisymmetric potentials V have been considered.
For a fixed magnetic quantum number m ∈ Z the authors of [19] studied the
behaviour of the SSF ξ(E;H(m),H

(m)
0 ) for the operator pair

(

H(m),H
(m)
0

)

defined in (7) at energies E near the Landau level 2m if m > 0, and near the
origin if m ≤ 0, and deduced analogues of the classical Levinson formulae,
concerning the pair

(

H(m),H
(m)
0

)

. Later, the methods in [19] were developed
in [23] and [24]. However, it is not possible to recover the results of Theorem
1, Theorem 2 and Corollary 1 from the results of [19], [23], and [24] even in
the case of axisymmetric V .
v) Finally, [16] contains general bounds on the SSF for appropriate pairs of
magnetic Schrödinger operators. These bounds are applied in order to de-
duce Wegner estimates of the integrated density of states for some random
alloy-type models.
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3.2 Strong Magnetic Field Asymptotics of the SSF

Our first theorem in this subsection treats the asymptotics as b → ∞ of
ξ(·;H(b),H0(b)) far from the Landau levels.

Theorem 3. [7, Theorem 2.1] Let (1) hold. Assume that E ∈ (0,∞) \ 2Z+,
and λ ∈ R. Then

ξ(Eb+ λ;H(b),H0(b)) =
b1/2

4π2

[E/2]
∑

l=0

(E − 2l)−1/2

∫

R3
V (x)dx +O(1), b→ ∞ .

(17)

The following two theorems concern the asymptotics of the SSF near a given
Landau level. In order to formulate our next theorem, we introduce the fol-
lowing self-adjoint operators

χ0 := −d2/dx2
3, χ = χ(X⊥) := χ0 + V (X⊥, .), X⊥ ∈ R

2 ,

which are defined on the Sobolev space H2(R), and depend on the parameter
X⊥ ∈ R

2. If (1) holds, then (χ(X⊥) − λ0)−1 − (χ0 − λ0)−1 ∈ S1 for each
X⊥ ∈ R

2 and λ0 < inf σ(χ(X⊥)). Hence, the SSF ξ(.;χ(X⊥), χ0) is well-
defined. Set Λ: = minX⊥∈R2 inf σ(χ(X⊥)). Evidently, Λ ∈ [−C0, 0]. Moreover,
Λ = limb→∞ inf σ(H(b)) (see [1, Theorem 5.8]).

Proposition 2. (cf. [7, Proposition 2.2]) Assume that (1) holds.
i) For each λ ∈ R \ {0} we have ξ(λ;χ(.), χ0) ∈ L1(R2).
ii) The function (0,∞) � λ �→

∫

R2 ξ(λ;χ(X⊥), χ0)dX⊥ is continuous, while
the non-increasing function

(−∞, 0) � λ �→
∫

R2
ξ(λ;χ(X⊥), χ0)dX⊥ = −

∫

R2
N(λ;χ(X⊥))dX⊥

(see (3)), is continuous at the point λ < 0 if and only if

|{X⊥ ∈ R
2|λ ∈ σ(χ(X⊥))}| = 0 . (18)

iii) Assume ±V ≥ 0. If λ > Λ, λ �= 0, then ±
∫

R2 ξ(λ;χ(X⊥), χ0)dX⊥ > 0.

Remark: The third part of Proposition 2 is not included in [7, Proposition 2.2],
but it follows easily from A. Pushnitski’s representation of the SSF (see [29]),
and the hypotheses V �≡ 0 and V ∈ C(R3).

Theorem 4. [7, Theorem 2.3] Assume that (1) holds. Let q ∈ Z+, λ ∈
R \ {0}. If λ < 0, suppose also that (18) holds. Then we have

lim
b→∞

b−1ξ(2bq + λ;H(b),H0(b)) =
1
2π

∫

R2
ξ(λ;χ(X⊥), χ0) dX⊥ . (19)
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By Proposition 2 iii), if ±V ≥ 0, then the r.h.s. of (19) is different from zero
if λ > Λ, λ �= 0. Unfortunately, we cannot prove the same for general non-
sign-definite potentials V . On the other hand, it is obvious that for arbitrary
V we have

∫

R2 ξ(λ;χ(X⊥), χ0)dX⊥ = 0 if λ < Λ. The last theorem of this
subsection contains a more precise version of (19) for the case λ < Λ.

Theorem 5. [7, Theorem 2.4] Let (1) hold.
i) Let λ < Λ. Then for sufficiently large b > 0 we have ξ(λ;H(b),H0(b)) = 0.
ii) Let q ∈ Z+, q ≥ 1, λ < Λ. Assume that the partial derivatives of 〈x3〉m3V
with respect to the variables X⊥ ∈ R

2 exist, and are uniformly bounded on
R

3. Then we have

lim
b→∞

b−1/2ξ(2bq+λ;H(b),H0(b)) =
1

4π2

q−1∑

l=0

(2(q− l))−1/2

∫

R3
V (x)dx . (20)

Remarks: i) Relations (17), (19), and (20) can be unified into a single asymp-
totic formula. In order to see this, notice that a general result on the high-
energy asymptotics of the SSF for 1D Schrödinger operators (see e.g. [39])
implies, in particular, that

lim
E→∞

E1/2ξ(E;χ(X⊥), χ0) =
1
2π

∫

R

V (X⊥, x3) dx3, X⊥ ∈ R
2 .

Then relation (17) with 0 < E �∈ 2Z+, or relations (19) and (20) with E = 2q,
q ∈ Z+, entail

ξ(Eb+ λ;H(b),H0(b))

=
b

2π

[E/2]
∑

l=0

∫

R2
ξ(b(E − 2l) + λ;χ(X⊥), χ0)dX⊥ (1 + o(1)), b→ ∞ . (21)

ii) By (3) for λ < 0 we have ξ(λ;H(b),H0) = −N(λ;H(b)). The asymptot-
ics as b → ∞ of the counting function N(λ;H0(b)) with λ < 0 fixed, has
been investigated in [32] under considerably less restrictive assumptions on
V than in Theorems 3–5. The asymptotic properties as λ ↑ 0, and as λ ↓ Λ if
Λ < 0, of the asymptotic coefficient − 1

2π

∫

R2 N(λ;χ(X⊥))dX⊥ which appears
at the r.h.s. of (19) in the case of a negative perturbation, have been studied
in [33]. The asymptotic distribution of the discrete spectrum for the 3D mag-
netic Pauli and Dirac operators in strong magnetic fields has been considered
in [34] and [35] respectively. The main purpose in [32, 34], and [35] was to
obtain the main asymptotic term (without any remainder estimates) of the
corresponding counting function under assumptions close to the minimal ones
which guarantee that the Hamiltonians are self-adjoint, and the asymptotic
coefficient is well-defined. Other results which again describe the asymptotic
distribution of the discrete spectrum of the Schrödinger and Dirac operator
in strong magnetic fields, but contain also sharp remainder estimates, have
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been obtained [9,17], and [18] under assumptions on V which, naturally, are
more restrictive than those in [32,34], and [35].
iii) Generalizations of asymptotic relation (17) in several directions can be
found in [26]. In particular, [26, Theorem 4] implies that if V ∈ S(R3), then
the SSF ξ(Eb+λ;H(b),H0(b)), E ∈ (0,∞)\2Z+, λ ∈ R, admits an asymptotic
expansion of the form

ξ(Eb+ λ;H(b),H0(b)) ∼
∞∑

j=0

cjb
1−2j

2 , b→ ∞ .

iv) Together with the pointwise asymptotics as b → ∞ of the SSF for the
pair (H0(b),H(b)) (see (17), (19), or (20)), it also is possible to consider its
weak asymptotics, i.e. the asymptotics of the convolution of the SSF with an
arbitrary ϕ ∈ C∞

0 (R). Results of this type are contained in [6].

3.3 High Energy Asymptotics of the SSF

Theorem 6. [8, Theorem 2.1] Assume that V satisfies (1). Then we have

lim
E→∞,E∈Or

E−1/2ξ(E;H,H0) =
1

4π2

∫

R3
V (x)dx, r ∈ (0, b) , (22)

where Or := {E ∈ (0,∞)|dist(E, 2bZ+) ≥ r}.
Remarks: i) It is essential to avoid the Landau levels in (22), i.e. to suppose
that E ∈ Or, r ∈ (0, b), as E → ∞, since by Theorems 1 - 2, the SSF has
singularities at the Landau levels, at least in the case ±V ≥ 0.
ii) For E ∈ R set

ξcl(E) :=
∫

T∗R3

(
Θ(E − |p + A(x)|2) −Θ(E − |p + A(x)|2 − V (x))

)
dxdp =

4π
3

∫

R3

(

E
3/2
+ − (E − V (x))3/2+

)

dx

where Θ(s) :=
{

0 if s ≤ 0 ,
1 if s > 0, is the Heaviside function. Note that ξcl(E)

is independent of the magnetic field b ≥ 0. Evidently, under the assump-
tions of Theorem 6 we have limE→∞E−1/2ξcl(E) = 2π

∫

R3 V (x)dx. Hence, if
∫

R3 V (x)dx �= 0, then (22) is equivalent to

ξ(E;H,H0) = (2π)−3ξcl(E)(1 + o(1)), E → ∞, E ∈ Or, r ∈ (0, b) .

iii) As far as the author is informed, the high-energy asymptotics of the SSF
for 3D Schrödinger operators in constant magnetic fields was investigated for
the first time in [8]. Nonetheless, in [19] the asymptotic behaviour as E → ∞,
E ∈ Or, of the SSF ξ(E;H(m),H

(m)
0 ) for the operator pair (H(m),H

(m)
0 ) (see

(7)) with fixed m ∈ Z has been been investigated. It does not seem possible
to deduce (22) from the results of [19] even in the case of axisymmetric V .
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Abstract. We report on some recent work with M. R. Douglas and B. Shiffman
on vacuum statistics for flux compactifications in string/M theory.

1 Introduction

According to string/M theory, the vacuum state of our universe is a 10 di-
mensional spacetime of the form M3,1 ×X, where M3,1 is Minkowski space
and X is a small 3-complex dimensional Calabi-Yau manifold X known as
the “small” or “extra” dimensions [6, 28]. The vacuum selection problem is
that there are many candidate vacua for the Calabi-Yau 3-fold X. Here, we
report on recent joint work with B. Shiffman and M. R. Douglas devoted to
counting the number of supersymmetric vacua of type IIb flux compactifica-
tions [12–14]. We also describe closely related the physics articles of Ashok-
Douglas and Denef-Douglas [2, 8, 11] on the same problem.

At the time of writing of this article, vacuum statistics is being inten-
sively investigated by many string theorists (see for instance [1, 7, 10, 19, 30]
in addition to the articles cited above). One often hears that the number
of possible vacua is of order 10500 (see e.g. [4]). This large figure is some-
times decried (at this time) as a blow to predictivity of string/M theory or
extolled as giving string theory a rich enough “landscape” to contain vacua
that match the physical parameters (e.g. the cosmological constant) of our
universe. However, it is very difficult to obtain sufficiently accurate results
on vacuum counting to justify the claims of 10500 total vacua, or even the
existence of one vacuum which is consistent with known physical parame-
ters. The purpose of our work is to develop methods and results relevant to
accurate vacuum counting.

From a mathematical viewpoint, supersymmetric vacua are critical points

∇GW (Z) = 0 (1)

of certain holomorphic sections WG called flux superpotentials of a line bun-
dle L → C over the moduli space C of complex structures on X × T 2

where T 2 = R
2/Z2. Flux superpotentials depend on a choice of flux G ∈

∗Research partially supported by NSF grant DMS-0302518
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www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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H3(X,Z⊕
√
−1Z). There is a constraint on G called the “tadpole constraint’,

so that G is a lattice point lying in a certain hyperbolic shell 0 ≤ Q[G] ≤ L
in H3(X,C) (16). Our goal is to count all critical points of all flux super-
potentials WG in a given compact set of C as G ranges over such lattice
points. Thus, counting vacua in K ⊂ C is a combination of an equidistribu-
tion problem for projections of lattice points and an equidistribution problem
for critical points of random holomorphic sections.

The work we report on gives a rigorous foundation for the program initi-
ated by M. R. Douglas [11] to count vacua by making an approximation to
the Gaussian ensembles the other two authors were using to study statistics
of zeros of random holomorphic sections (cf. [3,27]). The results we describe
here are the first rigorous results on counting vacua in a reasonably general
class of models (type IIb flux compaticifications). They are admittedly still in
a rudimentary stage, in particular because they are asymptotic rather than
effective. We will discuss the difficulties in making them effective below.

This report is a written version of our talk at the QMath9 conference in
Giens in October, 2004. A more detailed expository article with background
on statistical algebraic geometry as well as string theory is given in [32], which
was based on the author’s AMS address in Atlanta, January 2005.

2 Type IIb Flux Compactifications of String/M Theory

The string/M theories we consider are type IIb string theories compactified
on a complex 3-dimensional Calabi-Yau manifold X with flux [2, 18–20, 23].
We recall that a Calabi-Yau 3-fold is a compact complex manifold X of
dimension 3 with trivial canonical bundle KX , i.e. c1(X) = 0 [21, 22]. Such
X possesses a unique Ricci flat Kähler metric in each Kähler class. In what
follows, we fix the Kähler class, and then the CY metrics correspond to the
complex structures on X. We denote the moduli space of complex structures
on X by MC. In addition to the complex structure moduli on X there is
an extra parameter τ called the dilaton axion, which ranges over complex
structure moduli on T 2 = R

2/Z2. Hence, the full configuration space C of the
model is the product

C = MC × E , (Z = (z, τ); z ∈ MC, τ ∈ E) (2)

where E = H/SL(2,Z) is the moduli space of complex 1-tori (elliptic curves).
One can think of C as a moduli space of complex structures on the CY 4-fold
X × T 2.

By “flux” is meant a complex integral 3-form

G = F + iH ∈ H3(X,Z ⊕
√
−1Z) . (3)

The flux superpotential WG(Z) corresponding to G is defined as follows: On
a Calabi-Yau 3-fold, the space H3,0

z (X) of holomorphic (3, 0)-forms for each
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complex structure z on X has dimension 1, and we denote a holomorphically
varying family by Ωz ∈ H3,0

z (X). Given G as in (3) and τ ∈ H, physicists
define the superpotential corresponding to G, τ by:

WG(z, τ) =
∫

X

(F − τH) ∧Ωz . (4)

This is not well-defined as a function on C, since Ωz is not unique and τ
corresponds to the holomorphically varying form ωτ = dx+ τdy ∈ H1,0

τ (T 2)
which is not unique either. To be more precise, we define WG to be a holo-
morphic section of a line bundle L → C, namely the dual line bundle to the
Hodge line bundle H4,0

z,τ = H3,0
z (X) ⊗H1,0(T 2) → C. We form the 4-form on

X × T 2

G̃ = F ∧ dy +H ∧ dx
and define a linear functional on H3,0

z (X) ⊗H1,0
τ (T 2) by

〈WG(z, τ), Ωz ∧ ωτ 〉 =
∫

X×T 2
G̃ ∧Ωz ∧ ωτ . (5)

When ωτ = dx+τdy we obtain the original formula. As Z = (z, τ) ∈ C varies,
(5) defines a holomorphic section of the line bundle L dual toH3,0

z ⊗H1,0
τ → C.

The Hodge bundle carries a natural Hermitian metric

hWP (Ωz ∧ ωτ , Ωz ∧ ωτ ) =
∫

X×T 2
Ωz ∧ ωτ ∧Ωz ∧ ωτ

known as the Weil-Petersson metric, and an associated metric (Chern) con-
nection by ∇WP . The Kähler potential of the Weil-Petersson metric on MC

is defined by

K = ln
(

−iln
∫

X

Ω ∧Ω
)

. (6)

There is a similar definition on E and we take the direct sum to obtain a
Kähler metric on C. We endow L with the dual Weil-Petersson metric and
connection. The hermitian line bundle (H4,0, hWP ) → MC is a positive line
bundle, and it follows that L is a negative line bundle.

The vacua we wish to count are the classical vacua of the effective super-
gravity Lagrangian of the string/M model, which is derived by “integrating
out” the massive modes (cf. [28]). The only term relevant of the Lagrangian
to our counting problem is the scalar potential [31]

VG(Z) = |∇WG(Z)|2 − 3|W (Z)|2 , (7)

where the connection and hermitian metric are the Weil-Petersson ones. We
only consider the supersymmetric vacua here, which are the special critical
points Z of VG satisfying (1).
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3 Critical Points and Hessians of Holomorphic Sections

We see that type IIb flux compactifications involve holomorphic sections of
hermitian holomorphic line bundles over complex manifolds. Thus, counting
flux vacua is a problem in complex geometry. In this section, we provide a
short review from [12,13].

Let L → M denote a holomorphic line bundle over a complex manifold,
and endow L with a hermitian metric h. In a local frame eL over an open set
U ⊂M , one defines the Kähler potential K of h by

|eL(Z)|2h = e−K(Z) . (8)

We write a section s ∈ H0(M,L) locally as s = feL with f ∈ O(U). We
further choose local coordinates z. In this frame and local coordinates, the
covariant derivative of a section s takes the local form

∇s =
m∑

j=1

(
∂f

∂Zj
− f

∂K

∂Zj

)

dZj ⊗ eL =
m∑

j=1

eK
∂

∂Zj

(
e−K f

)
dZj ⊗ eL . (9)

The critical point equation ∇s(Z) = 0 thus reads,

∂f

∂Zj
− f

∂K

∂Zj
= 0 .

It is important to observe that although s is holomorphic, ∇s is not,
and the critical point equation is only C∞ and not holomorphic. This is
due to the factor ∂K

∂Zj
, which is only smooth. Connection critical points of s

are the same as ordinary critical points of log |s(Z)|h. Thus, the critical point
equation is a system of real equations and the number of critical points varies
with the holomorphic section. It is not a topological invariant, as would be
the number of zeros ofm sections in dimensionm, even on a compact complex
manifold. This is one reason why counting critical points, hence vacua, is so
complicated.

We now consider the Hessian of a section at a critical point. The Hessian
of a holomorphic section s of a general Hermitian holomorphic line bundle
(L, h) →M at a critical point Z is the tensor

D∇W (Z) ∈ T ∗ ⊗ T ∗ ⊗ L

where D is a connection on T ∗⊗L. At a critical point Z, D∇s(Z) is indepen-
dent of the choice of connection on T ∗. The Hessian D∇W (Z) at a critical
point determines the complex symmetric matrix Hc (which we call the “com-
plex Hessian’). In an adapted local frame (i.e. holomorphic derivatives vanish
at Z0) and in Kähler normal coordinates, it takes the form

Hc :=

(
H ′ H ′′

H ′′ H ′

)

=

(
H ′ −f(Z0)Θ

−f(z0)Θ H ′

)

, (10)
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whose components are given by

H ′
jq =

(
∂

∂Zj
− ∂K

∂Zj

)(
∂

∂Zq
− ∂K

∂Zq

)

f(Z0) , (11)

H ′′
jq = − f

∂2K

∂Zj∂Z̄q

∣
∣
∣
∣
Z0

= −f(Z0)Θjq . (12)

Here, Θh(z0) =
∑

j,q ΘjqdZj ∧ dZ̄q is the curvature.

4 The Critical Point Problem

We can now define the critical point equation (1) precisely. We define a
supersymmetric vacuum of the flux superpotential WG corresponding to the
flux G of (3) to be a critical point ∇WPWG(Z) = 0 of WG relative to the
Weil-Petersson connection on L.

We obtain a local formula by writing WG(Z) = fG(Z)eZ where eZ is
local frame for L → C. We choose the local frame eZ to be dual to Ωz ⊗ ωτ ,
and then fG(z, τ) is given by the formula (4). The E component of ∇WP is
∂
∂τ −

1
τ−τ̄ . The critical point equation is the system:






∫

X
(F − τH) ∧ {∂Ωz

∂zj
+ ∂K
∂zj

Ωz} = 0 ,

∫

X
(F − τ̄H) ∧Ωz = 0 ,

(13)

where K is from (6).
Using the special geometry of C ( [5,29]), one finds that the critical point

equation is equivalent to the following restriction on the Hodge decomposition
of H3(X,C) at z:

∇WPWG(z, τ) = 0 ⇐⇒ F − τH ∈ H2,1
z ⊕H0,3

z . (14)

Here, we recall that each complex structure z ∈ MC gives rise to a Hodge
decomposition

H3(X,C) = H3,0
z (X) ⊕H2,1

z (X) ⊕H1,2
z (X) ⊕H0,3

z (X) (15)

into forms of type (p, q). In the case of a CY 3-fold, h3,0 = h0,3 = 1, h1,2 = h2,1

and b3 = 2 + 2h2,1.
Next, we specify the tadpole constraint. We define the real symmetric

bilinear form on H3(X,C) by

Q(ψ,ϕ) = i3
∫

X

ψ ∧ ϕ̄ . (16)

The Hodge-Riemann bilinear relations for a 3-fold say that the form Q is
definite in each Hp,qz (X) for p + q = 3 with sign alternating + − +− as one
moves left to right in (15). The tadpole constraint is that
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Q[G] = i3
∫

X

G ∧ Ḡ ≤ L . (17)

Here, L is determined by X in a complicated way (it equals χ(Z)/24 where Z
is CY 4-fold which is an elliptic fibration over X/g, where χ(Z) is the Euler
characteristic and where g is an involution of X). Although Q is an indefinite
symmetric bilinear form, we see that Q >> 0 on H2,1

z (X) ⊕ H0,3
z for any

complex structure z.
We now explain the sense in which we are dealing with a lattice point

problem. The definition of WG makes sense for any G ∈ H3(X,C), so we
obtain a real (but not complex) linear embedding H3(X,C) ⊂ H0(C,L).
Let us denote the image by F and call it the space of complex-valued flux
superpotentials with dilaton-axion. The set of WG with G ∈ H3(X,Z ⊕√
−1Z) is then a lattice FZ ⊂ F , which we will call the lattice of quantized

(or integral) flux superpotentials.
Each integral flux superpotential WG thus gives rise to a discrete set of

critical points Crit(WG) ⊂ C, any of which could be the vacuum state of
the universe. Moreover, the flux G can be any element of H3(X,Z ⊕

√
−1Z)

satisfying the tadpole constraint (17). Thus, the set of possible vacua is the
union

VacuaL =
⋃

G∈H3(X,Z⊕
√
−1Z), 0≤Q[G]≤L

Crit(WG) . (18)

Our purpose is to count the number of vacua #VacuaL ∩ K in any given
compact subset K ⊂ C.

More generally, we wish to consider the sums

Nψ(L) =
∑

N∈H3(X,Z⊕
√
−1Z):Q[N ]≤L

〈CN , ψ〉 , (19)

where
〈CN , ψ〉 =

∑

(z,τ):∇N(z,τ)=0

ψ(N, z, τ) , (20)

and where ψ is a reasonable function on the incidence relation

I = {(W ; z, τ) ∈ F × C : ∇W (z, τ) = 0} . (21)

We often write Z = (z, τ) ∈ C. Points (W,Z) such that Z is a degenerate
critical point of W cause problems. They belong to the discriminant variety
D̃ ⊂ I of singular points of the projection π : I → F . We note that π−1(W ) =
{(W,Z) : Z ∈ Crit(W )}. This number is constant on each component of F\D
where D = π(D̃) but jumps as we cross over D.

To count critical points in a compact subset K ⊂ C of moduli space, we
would put ψ = χK(z, τ). We often want to exclude degenerate critical points
and then use test functions ψ(W,Z) which are homogeneous of degree 0 in
W and vanish on D̃ Another important example is the cosmological constant
ψ(W, z, τ) = VW (z, τ), i.e. the value of the potential at the vacuum, which is
homogeneous of degree 2 in W .
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5 Statement of Results

We first state an initial estimate which is regarded as “trivial’ in lattice
counting problems. In pure lattice point problems it is sharp, but we doubt
that it is sharp in the vacuum counting problem because of the “tilting” of
the projection I → C. We denote by χQ the characteristic function of the
hyperbolic shell 0 < QZ [W ] < 1 ⊂ F and by χQZ

the characteristic function
of the elliptic shell 0 < QZ [W ] < 1 ⊂ FZ .

Proposition 1. Suppose that ψ(W,Z) = χK where K ⊂ I is an open set
with smooth boundary. Then:

Nψ(L) = Lb3
[∫

C

∫

FZ

ψ(W,Z)|detHcW (Z)|χQZ
dW dVWP +RK(L)

]

,

where

1. If K is disjoint from the D̃, then RK(L) = O
(
L−1/2

)
.

2. If K is a general compact set (possibly intersecting the discriminant lo-
cus), then RK(L) = O

(
L−1/2

)

Here, b3 = dimH3(X,R), Qz,τ = Q|Fz,τ
and χQz,τ

(W ) is the characteris-
tic function of {Qz,τ ≤ 1} ⊂ Fz,τ , HcW (Z) is the complex Hessian of W at
the critical point Z in the sense of (10). We note that the integral converges
since {QZ ≤ 1} is an ellipsoid of finite volume. This is an asymptotic formula
which is a good estimate on the number of vacua when L is large (recall that
L is a topological invariant determined by X).

The reason for assumption (1) is that number of critical points and the
summand 〈CW , ψ〉 jump across D, so in Nψ(L) we are summing a discontin-
uous function. This discontinuity could cause a relatively large error term in
the asymptotic counting. However, superpotentials of physical interest have
non-degenerate supersymmetric critical points. Their Hessians at the critical
points are ‘fermionic mass matrices’, which in physics have only non-zero
eigenvalues (masses), so it is reasonable assume that suppψ is disjoint from
D.

Now we state the main result.

Theorem 1 Suppose ψ(W, z, τ) ∈ C∞
b (F ×C) is homogeneous of degree 0 in

W , with ψ(W, z, τ) = 0 for W ∈ D. Then

Nψ(L) = Lb3

[∫

C

∫

Fz,τ

ψ(W, z, τ)|detHcW (z, τ)|χQz,τ
(W )dWdVWP (z, τ)

+ O
(

L− 2b3
2b3+1

)
]

.

Here, C∞
b denotes bounded smooth functions.
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There is a simple generalization to homogeneous functions of any degree
such as the cosmological constant. The formula is only the starting point
of a number of further versions which will be presented in Sect. 8 in which
we “push-forward” the dW integral under the Hessian map, and then per-
form an Itzykson-Zuber-Harish-Chandra transformation on the integral. The
latter version gets rid of the absolute value and seems to most useful for nu-
merical studies. Further, one can use the special geometry of moduli space to
simplify the resulting integral. Before discussing them, we pause to compare
our results to the expectations in the string theory literature.

6 Comparison to the Physics Literature

The reader following the developments in string theory may have encountered
discussions of the “string theory landscape” (see e.g. [4, 30]). The multitude
of superpotentials and vacua is a problem for the predictivity of string theory.
It is possible that a unique vacuum will distinguish itself in the future, but
until then all critical points are candidates for the small dimensions of the
universe, and several groups of physicists are counting or enumerating them
in various models (see e.g. [7, 8, 10]).

The graph of the scalar potential energy may be visualized as a land-
scape [30] whose local minima are the possible vacua. It is common to hear
that there are roughly 10500 possible vacua. This heuristic figure appears to
originate in the following reasoning: assuming b3 ∼ 250, the potential energy
VG(Z) is a function roughly 500 variables (including fluxes G). The criti-
cal point equation for a function of m variables is a system of m equations.
Naively, the number of solutions should grow like dm where d is the number of
solutions of the jth equation with the other variables held fixed. This would
follow from Bézout’s formula if the function was a polynomial and if we were
counting complex zeros. Thus, if the “degree” of VG were a modest figure of
10 we would obtain the heuristic figure.

Such an exponential growth rate of critical points in the number of vari-
ables also arises in estimates of the number of metastable states (local minima
of the Hamiltonian) in the theory of spin glasses. In fact, an integral similar
to that in Theorem 1 arises in the formula for the expected number of local
minima of a random spin glass Hamiltonian. Both heuristic and rigorous cal-
culations lead to an exponential growth rate of the number of local minima
as the number of variables tends to infinity (see e.g. [17] for a mathematical
discussion and references to the literature). The mathematical similarity of
the problems at least raises the question whether the number of string/M
vacua should grow exponentially in the number 2b3 of variables (G,Z), i.e.
in the “topological complexity” of the Calabi-Yau manifold X.

Our results do not settle this problem, and indeed it seems to be a difficult
question. Here are some of the difficulties: First, in regard to the Bézout esti-
mate, the naive argument ignores the fact that the critical point equation is
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a real C∞ equation, not a holomorphic one and so the Bézout estimate could
be quite inaccurate. Moreover, a flux superpotential is not a polynomial and
it is not clear what “degree” it has, as measured by its number critical points.
In simple examples (see e.g. [2, 8, 10], the superpotentials do not have many
critical points and it is rather the large number of fluxes satisfying the tadpole
constraint which produces the leading term Lb3 . This is why the flux G has to
be regarded as one of the variables if one wants to rescue the naive counting
argument. In addition, the tadpole constraint has a complicated dimensional
dependence. It induces a constraint on the inner integral in Theorem 1 to an
ellipse in b3 dimensions, and the volume of such a domain shrinks at the rate
1/(b3)!. Further, the volume of the Calabi-Yau moduli space is not known,
and could be very small. Thus, there are a variety of competing influences
on the growth rate of the number of vacua in b3 which all have a factorial
dependence on the dimension.

To gain a better perspective on these issues, it is important to estimate
the integral giving the leading coefficient and the remainder in Theorem 1.
The inner integral is essentially an integral of a homogeneous function of
degree b3 over an ellipsoid in b3 dimensions, and is therefore very sensitive
to the size of b3. The full integral over moduli space carries the additional
problem of estimating its volume. Further, one needs to estimate how large L
is for a given X. Without such effective bounds on L, it is not even possible
to say whether any vacua exist which are consistent with known physical
quantities such as the cosmological constant.

7 Sketch of Proofs

The proof of Theorem 1 is in part an application of a lattice point result to the
lattice of flux superpotentials. In addition, it uses the formalism on the density
of critical points of Gaussian random holomorphic sections in [12]. The lattice
point problem is to study the distribution of radial projections of lattice
points in the shell 0 ≤ Q[G] ≤ L on the surface Q[G] = 1. Radial projections
arise because the critical point equation ∇WG = 0 is homogeneous in G.

Thus, we consider the model problem: Let Q ⊂ R
n (n ≥ 2) be a smooth,

star-shaped set with 0 ∈ Q◦ and whose boundary has a non-degenerate sec-
ond fundamental form. Let |X|Q denote the norm of X ∈ R

n defined by
Q = {X ∈ R

n : |X|Q < 1} . In the following, we denote the large parameter
by

√
L to maintain consistency with Theorem 1.

Theorem 2 [14] If f is homogeneous of degree 0 and f |∂Q ∈ C∞
0 (∂Q), then

Sf (L) :=
∑

k∈Zn∩
√
LQ\{0}

f(k) = L
n
2

∫

Q

f dX +O(L
n
2 − n

n+1 ), L→ ∞ .
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Although we have only stated it for smooth f , the method can be gener-
alized to f |∂Q = χK where K is a smooth domain in ∂Q [33]. However, the
remainder then depends on K and reflects the extent to which projections of
lattice points concentrate on ∂K ⊂ ∂Q. The asymptotics are reminiscent of
the the result of van der Corput, Hlawka, Herz and Randol on the number of
lattice points in dilates of a convex set, but as of this time of writing we have
not located any prior studies of the radial projection problem. Number theo-
rists have however studied the distribution of lattice points lying exactly on
spheres (Linnik, Pommerenke). We also refer the interested reader to [15] for
a recent article counting lattice points in certain rational cones using meth-
ods of automorphic forms, in particular L-functions. We thank B. Randol
for some discussions of this problem; he has informed the author that the
result can also be extended to more general kinds of surfaces with degenerate
second fundamental forms.

Applying Theorem 2 to the string/M problem gives that

Nψ(L) = Lb3

[∫

{Q[W ]≤1}
〈CW , ψ〉 dW +O

(

L− 2b3
2b3+1

)
]

. (22)

We then write (22) as an integral over the incidence relation (21) and change
the order of integration to obtain the leading coefficient

∫

{Q[W ]≤1}
〈CW , ψ〉 dW

=
∫

C

∫

Fz,τ

ψ(W, z, τ)|detHcW (z, τ)|χQz,τ
dWdVWP (z, τ) (23)

in Theorem 1. Heuristically, the integral on the left side is given by
∫

F

∫

C
ψ(W,Z)|detHcW (Z)|δ(∇W (z))χQ(Z)dWdVWP (Z) . (24)

The factor |detHcW (Z)| arises in the pullback of δ under ∇W (Z) for fixed
W , since it weights each term of (20) by 1

| detHcW (Z)| . We obtain the stated
form of the integral in (23) by integrating first in W and using the formula
for the pull-back of a δ function under a linear submersion. That formula also
contains another factor 1

detA(Z) where A(Z) = ∇Z′
j
∇Z′′

k
ΠZ(Z ′, Z ′′)|Z′=Z′′=Z ,

where ΠZ is the Szegö kernel of FZ , i.e. the orthogonal projection onto that
subspace. Using special geometry, the matrix turns out to be just I and hence
the determinant is one.

8 Other Formulae for the Critical Point Density

In view of the difficulty of estimating the leading term in Theorem 1, it is
useful to have alternative expressions. We now state two of them.
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The first method is to change variables to the Hessian HcW (Z) under
the Hessian map

HZ : SZ → Sym(m,C) ⊕ C, HZ(W ) = HcW (Z) , (25)

where m = dim C = h2,1+1. It turns out that Hessian map is an isomorphism
to a real b3-dimensional space HZ ⊕ C, where

HZ = span
R

{(
0 ej
etj F j(z)

)

,

(
0 iej
ietj −iF j(z)

)}

j=1,...,h2,1

. (26)

Here, ej is the j-th standard basis element of C
h2,1

and F j(z) ∈ Sym(h2,1,C)

is the matrix
(

Fjik(z)
)

whose entries define the so-called “Yukawa couplings”
(see [5, 29] for the definition). We define the positive definite operator CZ :
HZ → HZ by:

(C−1
Z HZW,HZW ) = QZ(W,W ) . (27)

The entries in CZ are quadratic expressions in the F jik (see [14]).

Theorem 3 We have:

Kcrit(Z) = 1
b3! detC′

Z

∫

HZ⊕C

∣
∣detH∗H − |x|2I

∣
∣ e−(C−1

Z H,H)+|x|2) dH dx ,

= 1
detC′

Z

∫

HZ⊕C

∣
∣detH∗H − |x|2I

∣
∣χCZ

(H,x)dHdx,

where χCZ
is the characteristic function of the ellipsoid {(CZH,H)+ |x|2) ≤

1} ⊂ HZ .

Finally, we give formula of Itzykson-Zuber type as in [13, Lemma 3.1],
which is useful in that it has a fixed domain of integration.

Theorem 4 Let ΛZ = CZ ⊕ I on HZ ⊕ C and let PZ denote the orthogonal
projection from Sym(m,C) onto HZ . Then:

Kcrit(Z) = cm lim
ε′→0+

∫

Rm

lim
ε→0+

∫

Rm

∫

U(m)

×
∆(ξ)∆(λ) |

∏

j λj | ei〈ξ,λ〉e−ε|ξ|
2−ε′|λ|2

√

det
[

iΛZPZρ(g)∗D̂(ξ)ρ(g) + I
] dg dξ dλ ,

where:

– m = h2,1 + 1, cm = (−i)m(m−1)/2

2m π2m
∏m

j=1 j!
;

– ∆(λ) = Πi<j(λi − λj),
– dg is unit mass Haar measure on U(m),
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– D̂(ξ) is the Hermitian operator on Sym(m,C) ⊕ C given by

D̂(ξ)
(
(Hjk), x

)
=
((

ξj + ξk
2

Hjk

)

, −
(∑m

q=1 ξq

)

x

)

,

– ρ is the representation of U(m) on Sym(m,C) ⊕ C given by

ρ(g)(H,x) = (gHgt, x) .

– HZ is a real (but not complex) subspace of Sym(m,C).

The proof is similar to the one in [13], but we sketch the proof here to
provide a published reference. Some care must be taken since the Gaussian
integrals are over real but not complex spaces of complex symmetric matrices.

Proof. We first rewrite the integral in Theorem 3 as a Gaussian integral over
HZ ⊕ C (viewed as a real vector space):

Kcrit(Z) =
∫

HZ⊕C

|detH∗H − |x|2I| χ{〈Λ−1
Z H,H〉≤1}dHdx

=
πm

√
detΛZ
b3!

I(Z) ,

where

I(Z) =
1

πm
√

detΛZ

∫

HZ×C

∣
∣det(HH∗ − |x|2I)

∣
∣

× exp
(
−〈Λ−1

Z (H,x), (H,x)〉
)
dHdx . (28)

Here, H is a complex m × m symmetric matrix, so H∗ = H. The inner
product in the exponent is the real part of the Hilbert-Schmidt inner product,
〈A,B〉 = ReTrAB∗.

As in [13], we rewrite the integral as

I(Z) = lim
ε′→0

lim
ε→0

Iε,ε′(Z) ,

where Iε,ε′(Z) is the absolutely convergent integral,

Iε,ε′(Z) =
1

(2π)m2πm
√

detΛ
∫

Hm

∫

Hm

∫

HZ×C

|detP | e−εTrΞ∗Ξ−ε′TrP∗P ei〈Ξ,P−HH∗+|x|2I〉HS

× exp
(
−〈Λ−1

Z (H,x), (H,x)〉
)
dH dx dP dΞ . (29)

Here, Hm denotes the space of all Hermitian matrices of rank m, and
〈, 〉HS is the Hilbert-Schmidt inner product TrAB∗. Formula 29 is valid,
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since as ε→ 0, the dΞ integral converges to the delta function δHH∗−|x|2I(P ).
Then, as ε′ → 0, the dP integral evaluates the integrand at P = HH∗−|x|2I
and we retrieve the original integral I(Z).

By the same manipulations as in [13], we obtain:

Iε,ε′(Z) =
(−i)m(m−1)/2

(2π)m(
∏m
j=1 j!)πm

√
detΛZ

∫

U(m)

∫

HZ×C

∫

Rm

∫

Rm

∆(λ)∆(ξ) |det(D(λ))| ei〈λ,ξ〉e−ε(|ξ|2+|λ|2)

× ei〈D(ξ),|x|2I−gHH∗g∗〉HS−〈Λ−1(H,x),(H,x)〉 dξ dλ dH dx dg . (30)

Further we observe that the dHdx integral is a Gaussian integral. Simplifying
the phase as in [13] using

〈D(ξ), gHH∗g∗ − |x|2I〉HS = Tr(D(ξ)gHgtḡH∗g∗) − TrD(ξ) |x|2

=
〈

D̂(ξ)ρ(g)(H,x), ρ(g)(H,x)
〉

HS

where D̂(ξ) and ρ(g) are as in the statement of the theorem, the HZ × C

integral becomes

Iξ,g(Z) : =
∫

HZ×C

exp
[
− i

〈

D̂(ξ)ρ(g)(H,x), ρ(g)(H,x)
〉

HS

−〈Λ−1
Z (H,x), (H,x)〉

]
dH dx . (31)

The only new points in the calculation are that this Gaussian integral is over
the Hessian space HZ rather than over the full space of complex symmetric
matrices of this rank, and that it is a real subspace a complex vector space.
Hence the Gaussian integral is a real one albeit with a complex quadratic
form. We denote by PZ the orthogonal projection

PZ : Sym(m,C) → HZ

and then we have:

1
πm

√
detΛZ

Iξ,g(Z) =
1√

detΛZ

1
√

det[iPZρ(g)∗D̂(ξ)ρ(g) + Λ−1
Z ]

=
1

√

det
[

iΛZPZρ(g)∗D̂(ξ)ρ(g) + Im

] . (32)

Substituting (32) into (30), we obtain the desired formula. We now recall
that Λ = C ′ ⊕ 1. It follows that

ΛZPZρ(g)∗D̂(ξ)ρ(g) + Im =

(

C ′
ZPZρ(g)∗D(ξ)ρ(g) + Ih21) ⊕ (1 −

m∑

q=1

ξq

)

,
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where

D(ξ)(Hjk)
)

=
(
ξj + ξk

2
Hjk

)

.

Hence, its determinant equals


1 −
h21
∑

q=1

ξq



det(C ′
ZPZρ(g)∗D(ξ)ρ(g) + Ih21) .

9 Black Hole Attractors

We close this survey with a discussion of a simpler problem analogous to
counting flux vacua that arises in the quantum gravity of black holes [16,28],
namely counting solutions of the black-hole attractor equation. For a math-
ematical introduction to this equation, we refer the reader to [26]. The
attractor equation is the same as the critical point equation for flux su-
perpotentials except that C = M and G ∈ H3(X,R). Physically, Nψ(S)
counts the so-called duality-inequivalent, regular, spherically symmetric BPS
black holes with entropy S ≤ S∗. The charge of a black hole is an element
Q = NαΣα ∈ H3(X,Z). The central charge Z = 〈Q,Ω〉 plays the role of the
superpotential.

There are two main differences to the vacuum counting problems for flux
superpotentials. First, the reality of the flux G in the black-hole attractor
equation ∇WG(z) = 0 forces G ∈ H3,0

z ⊕H0,3
z rather than G ∈ H2,1

z ⊕H0,3
z

as in the flux vacua equation. The spaceH3,0⊕H0,3 is only 2-dimensional and
that drastically simplifies the problem. Second, by a well-known computation
due to Strominger, the Hessian D∇G(z) of |Z|2 at a critical point is always
a scalar multiple xΘ of the curvature form of the line bundle, which is the
Weil-Petersson (1, 1) form.

We now state the analogue of Theorem 3 in the black hole attractor case
(see also [8]). The new feature is that the image of Hessian map from the
space Sz of WG with a critical point at z is the one-dimensional space of
Hessians of the form (

0 −xΘ

−xΘ 0

)

, (33)

and hence the pushforward under the Hessian map truly simplifies the integral
in Theorem 3. The formula for the black-hole density becomes

Kcrit
γ,∇(z) =

∫

C

|x|2b3χQz
(x)dx .

We note that the difficult absolute value in Theorem 3 simplifies to a perfect
square in the black hole density formula and can therefore be evaluated as a
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Gaussian integral. Additionally, the one-dimensionality of the space of Hes-
sians has removed the complexity of the b3-dimensional integral in the flux
vacuum setting.

We can further simplify the integral by removing Qz, which is a scalar
multiple of the Euclidean |x|2. The scalar multiple involves the orthogonal
projection ΠSz

(z, w) onto the space of Sz for the inner product Qz. If we
change variables x→

√
ΠSz

(z, z), we get

Kcrit
γ,∇(z) = |ΠSz

(z, z)|
∫

C

|x|2b3e−〈x,x〉dx.

In Kähler normal coordinates, use of special geometry shows that
Πz(z, z) = 1. A simple calculation shows:

Proposition 2. The density of extremal black holes is given by:

Kcrit
γ,∇(z) =

1
b3
dVWP =⇒ Nψ(L) ∼ Lb3V olWP (M) .

The analogy between the black hole density and flux vacuum critical point
density should be taken with some caution since the simplifying features are
likely to have over-simplified the problem. We therefore mention another
modified flux vacuum problem in which the off-diagonal entries xΘ of the
Hessian matrix vanish, so that the Hessian matrix is purely holomorphic and∣
∣detH∗H − |x|2Θ

∣
∣ = |detH∗H| again becomes a perfect square which can be

evaluated by the Wick method. Namely, if one uses a flat meromorphic con-
nection ∇ rather than the Weil-Petersson connection, the curvature vanishes
away from the polar divisor. The Weil-Petersson connection arises naturally
in string/M theory [6], but one may view a meromorphic connection as an
approximation in which the “Planck mass” is infinitely large. In any case,
it would be interesting to evaluate the density of critical points relative to
meromorphic connections since they are more calculable and should have the
same complexity as those for Weil-Petersson connections.
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